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S.1 Theoretical considerations

This section extends section 2.3 to further explore theoretical aspects of the proposed Bayesian

predictive selection rules to elucidate the manner in which treatment selection is impacted by

prognostic features. Following the same notation of the main manuscript, φj refers to the mean

utility for subject i when only predictive features are considered, whereas φ′j refers to the mean

utility for subject i when both predictive and prognostic features are considered. Considering

the case wherein clinical response can be adequately characterized by a binary variable, we have

Lemma 1.

Lemma S.1.1. For binary outcomes incorporating prognostic features fails to alter the resultant

decision for treatment selection.
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Proof. We can show that φ1 − φ2 = w1(p11 − p21) and

φ′1 − φ′2 = w1d1(
p11
C1

− p21
C2

) = w1d1(
p11

d0p10 + d1p11
− p21
d0p20 + d1p21

)

=
w1d1
C1C2

{p11(d0 − d0p21 + d1p21)− p21(d0 − d0p11 + d1p11)} =
w1d1d0
C1C2

(p11 − p21).

The sign of φ′1 − φ′2 = w1d1d0
C1C2

(p11 − p21) depends on (p11 − p21), and thus consistent with the sign

of φ1 − φ2 = w1(p11 − p21). Thus, an optimal treatment resulting from φ1 − φ2 in the absence

of prognostic covariates would be consistent with the optimal treatment incorporating prognostic

covariates φ′1 − φ′2.

By way of contrast, for ordinal outcomes (i.e. K > 2) integrating prognostic features with

the Bayesian predictive approach may alter the sign of φ′1 − φ′2, and thereby may yield differential

optimal treatments when compared to models that utilize predictive features alone. To elucidate,

we consider responses comprised of trinary ordinal-valued outcomes. Based on predictive features

only, the difference in mean treatment utility is φ1−φ2 = w1(p11−p21)+w2(p12−p22). Integrating

both prognostic and predicative features yields the following difference in expected mean utility

φ′1 − φ′2 =w1d1(
p11

d0p10 + d1p11 + d2p12
− p21
d0p20 + d1p21 + d2p22

)+

w2d2(
p12

d0p10 + d1p11 + d2p12
− p22
d0p20 + d1p21 + d2p22

)

=
w1d1
C1C2

{d0(p11 − p21) + (d2 − d0)(p11p22 − p21p12)}+

w2d2
C1C2

{d0(p12 − p22) + (d1 − d0)(p12p21 − p11p22)}

With some algebra, we can show that

φ′1−φ′2 =
d0

C1C2

{w1d1(p11−p21)+w2d2(p12−p22)}+
p11p22 − p21p12

C1C2

{d1d2(w1−w2)+d0(w2d2−w1d1)},

where C1 = d0p10 + d1p11 + d2p12 and C2 = d0p20 + d1p21 + d2p22. Thereby sign of quantity

φ′1 − φ′2 depends on dk, wk, pjk for k = 0, 1, 2 and j = 1, 2. There exist a few special cases where

the treatment selection decisions are invariant to integration of the prognostic features. These are
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described in Lemmas 2 and 3.

Lemma S.1.2. (i) Assume that p11 ≥ p21 and p12 ≥ p22, then φ1 − φ2 ≥ 0 and φ′1 − φ′2 ≥ 0 if
d1
d0
→ 0 and d1

d2
→ 0.

(ii) Assume that p11 ≤ p21 and p12 ≤ p22, then φ1−φ2 ≤ 0 and φ′1−φ′2 ≤ 0 if d1
d0
→ 0 and d1

d2
→ 0.

Proof. For (i) it is clear that φ1 − φ2 ≥ 0. We can show that

lim
d1
d0
→0,

d1
d2
→0

φ′1 − φ′2
d0d2

=
w2

C1C2

(p12 − p22 + p11p22 − p21p12)

≥ w2

C1C2

(p12 − p22 + p21p22 − p21p12) =
w2

C1C2

(p12 − p22)(1− p21) ≥ 0

that obviously implies φ′1 − φ′2 > 0. Point (ii) can be analogously proven. Note that d1
d0
→ 0 and

d1
d2
→ 0 imply that the probability of observing response level yi? = 1 tends to 0.

Lemma S.1.3. (i) Assume that p11 ≥ p21 and p12 ≥ p22, then φ1 − φ2 ≥ 0 and φ′1 − φ′2 ≥ 0 if
d2
d0
→ 0 and d2

d1
→ 0.

(ii) Assume that p11 ≤ p21 and p12 ≤ p22, then φ1−φ2 ≤ 0 and φ′1−φ′2 ≤ 0 if d2
d0
→ 0 and d2

d1
→ 0.

Proof. For (i) it is clear that φ1 − φ2 ≥ 0. We can show that

lim
d2
d0
→0,

d2
d1
→0

φ′1 − φ′2
d0d1

=
w1

C1C2

(p11 − p21 − p11p22 + p21p12)

≤ w1

C1C2

(p11 − p21 − p11p12 + p21p12) =
w1

C1C2

(p11 − p21)(1− p12) ≥ 0

that obviously implies φ′1 − φ′2 > 0. The proof for (ii) follows the same approach. Again, d2
d0
→ 0

and d2
d1
→ 0 indicate that the probability of observing the outcome of yi? = 2 tends to 0.

When the probability of observing response level yi? = 0 tends to 0, however, we fail to obtain

similar results. Specifically, we can show that lim d0
d1
→0,

d0
d2
→0

φ′1−φ′2
d1d2

= p11p22−p21p12
C1C2

{(w1 − w2)}.

However when p11 ≥ p21 and p12 ≥ p22, this quantity (and consequently φ′1 − φ′2) can be either

positive or negative; on the contrary, φ1−φ2 ≥ 0, potentially leading to differences in the selection

of the treatment.
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S.2 Simulating 152 patients and generating treatment responses

Genomic features, such as expression levels of molecular quantities arising from sequencing data,

tend to exhibit correlation structures that are poorly characterized by smooth parametric models.

Our simulation study was devised to emulate the dependence structure observed in a well-known

dataset of leukemia (http://www.pnas.org/content/101/12/4164.full?tab=ds) containing gene ex-

pression levels for a total of 5,000 genes across 38 patients, 11 diagnosed with acute myelogenous

leukemia (AML) and 27 were diagnosed with acute lymphoblastic leukemia (Gentleman et al.,

1999). To obtain a comparable sample size to that used in our case study presented in Section 4

(where n = 158) we expanded the dataset to yield a total of 152 simulated patients, 38× 4 = 152,

each with 92 features. In addition, to reflect the current clinical cancer context, wherein a poten-

tially large-set of molecular features are considered as actionable therapeutic targets, while a small

number of established clinically-derived factors are utilized for prognostication, we selected the

first 90 features as predictive, and reserved the remaining 2 as prognostic.

To simulate 152 patients, we clustered the top 1,000 varied genes (the maximum minus the

minimum level of observed gene expression), and selected 92 clusters containing at least four

genes. Assuming the first 4 highly correlated genes were exchangeable, we stacked them as one

feature and hence converted each patient into four. This process closely follows the schema pro-

posed by (Ma et al., 2016); more details can be found in the following paragraphs as well as in the

supplementary materials of (Ma et al., 2016).

Generating treatment responses. We simulated the ordinal outcome variables using two

separate continuation-ratio logistic functions. The first,

rkj(xi, Ai = j) = ln{P (yi = k|xi, Ai = j)

p(yi < k|xi, Ai = j)
} = ηjk + β1jkψ(di) (1)

to characterize the effects of the predictive features. The second,

rkj(zi, Ai = j) = ln{P (yi = k|zi, Ai = j)

p(yi < k|zi, Ai = j)
} = δjk + β2kzi (2)
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to define response-level probabilities for the prognostic features, where xi and zi represent predic-

tive and prognostic features, respectively. The information carried by the many predictive features

xi can be summarized via dimension reduction techniques, such as principal component analysis

(PCA) in our implementation, and stored in a new variables di. With ψ(di) we denote a one-

dimensional function of a summary of the predictive covariates, such as the first two principal

components in our implementation. By definition, values of the coefficients for the prognostic

features, β2k, were identical for all treatments.

The regression coefficients β2k and β1jk were set to values that could produce realistic response

rates. Probabilities for each level of ordinal response variable, referred to hereafter as ordinal re-

sponse probabilities or ORP, were generated for each patient in proportion to the pointwise product

of (1) and (2). For example, given probabilities (0.19,0.59,0.32) and (0.5,0.3,0.2), respectively, for

a particular patient, the true ORP for generating the ordinal-valued response variable would be

obtained as 0.19×0.5
0.19×0.5+0.59×0.3+0.32×0.2 .

Figure S.1 depicts differences in the underlying true mean treatment utilities for the 152 cases

used in our simulation study, each determined by 90 predictive and 2 prognostic features under two

general scenarios The simulated cases are intentionally heterogenous such that the extent of gain

obtained from the optimal treatment (in relation to the non-optimal treatment) varies by patient.

For example, as characterized by DMTU, gains obtained from correctly assigning the optimal

treatments for patients 113 and 117 were 54 and 3, respectively.

In all simulation studies we did not generate the simulated data from the proposed model.

Within our model framework, we can not simulate prognostic features from mixed normal distri-

butions since the conditional probability of belonging to a given response group depends on both

prognostic and predictive features. For simulation purposes, the strategy of generating prognostic

features with fixed response probabilities fails when predictive features are incorporated (Franzén,

2008). We took an alternative strategy and used the observed prognostic features from one of our

case studies to generate the response variables. We power transformed these features, selecting the

coefficients in (2) such that the resulting generated data have a clustering pattern that resembles

the pattern of data generated from normal-mixture models (Franzén, 2008). Figure S.2 presents
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the scatter and conditional density plots for the transformed features based on one simulated data

set under scenario 2. We can see that the generated data are well clustered in terms of responses al-

though the power transformed features are not normally distributed. Note that while we generated

only two scenarios, in Section 3.1 of the manuscript we repeated our analysis using 1) the prog-

nostic covariates with power transformations 2) the prognostic covariates in the original scale 3)

random sampling from independent normal distributions with mean and variance estimated from

the original data. The scatter and density plots for the original and random features under scenario

2 are presented in Figures S.3 and S.4 respectively. We can see that the conditional distribution

of the original features are clearly apart from the normality assumption. This simulation strategy

worked very well for our simulation studies, although the features were not generated from mix-

ture normal distributions. As described in the main manuscript, the proposed approach worked

reasonably well across all scenarios.

S.3 Additional simulation results

Our modeling framework can simultaneously integrate high-dimensional omics-type predictive

and a reasonable large number of prognostic variables. Our approach performed well with 90

predictive features in this study, as well as in our previous study with 200 predictive features in

both simulation and real data analysis, (Ma et al., 2016). On the other hand, to investigate the

scale of our approach in handling prognostic features, we conducted additional simulation study in

scenarios with relatively large number of prognostic features. Specifically, we extended simulation

scenario 2 to scenario 2.1 with the 2 features and 8 noise random variables, and scenario 2.2

with the 2 features and 6 random noise variables. These noise variables were generated from

independent normal distributions and were not used to generate the outcome variables. Results are

presented in the following, Table S1.

In general, results from scenario 2.1 and 2.2 are comparable to those from scenario 2, except

that the numbers of patients for which the model correctly predicted their simulated outcomes

are relatively small. To our experience, this is common for data analysis using high dimensional

data with some noise variables. To improve model accuracy in predicting the outcome, data are
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often pre-processed for analysis. In our data analysis, we described a straightforward data pre-

processing method to select predictive and prognostic variables, while more advanced approaches

can be found in (Yu et al., 2003) and its references.

Table S1: Simulation results based on scenario 2. Scenario 2.1: 10 prognostic variables including
2 features and 8 random normal noise variables; scenario 2.2: 8 prognostic variables including 2
features and 6 random normal noise variables. The table provides means values and standard de-
viations (SD) obtained for the summary measures of %∆g = %∆MTUg, MOT, and CPO. Results
are based on 100 duplicated data sets.

Method MOT(SD) %∆g(SD) CPO(SD)
Scenario 2.1

HC-BPP 10.0 (7.0) 0.853 (0.11) 68.9 (7.0)
KM-BPP 22.0 (9.3) 0.679 (0.15) 67.8 (6.9)
PAM-BPP 25.0 (9.3) 0.651 (0.14) 65.4 (7.0)
LASSO 47.0 (8.6) 0.462 (0.12) 99.1 (9.5)
Ridge 28.0 (5.9) 0.573 (0.10) 75.5 (6.6)
LassoINT 44.0 (10.2) 0.439 (0.15) 104.7 (9.8)
RidgeINT 34.0 (8.6) 0.482 (0.16) 75.9 (6.5)

Scenario 2.2
HC-BPP 10.0 (8.0) 0.859 (0.12) 71.5 (7.5)
KM-BPP 22.0 (9.2) 0.686 (0.15) 70.4 (7.3)
PAM-BPP 24.0 (9.8) 0.662 (0.15) 67.7 (7.5)
LASSO 46.0 (9.0) 0.471 (0.12) 99.3 (9.7)
Ridge 28.0 (6.0) 0.574 (0.10) 75.8 (6.7)
LassoINT 44.0 (10.4) 0.438 (0.15) 104.8 (9.3)
RidgeINT 34.0 (8.8) 0.476 (0.16) 76.2 (6.7)

7



References

Franzén, J. (2008). Assessment of variations in control of asthma over time. Bayesian Cluster

Analysis: Some Extensions to Non-standard Situations (Doctoral dissertation, Statistiska insti-

tutionen)

Golub, T. R. and Slonim, D. K. and Tamayo, P. and Huard, C. and Gaasenbeek, M. and Mesirov,

J. P. and Coller, H. and Loh, M. L. and Downing, J. R. and Caligiuri, M. A. and others (1999).

Molecular classification of cancer: class discovery and class prediction by gene expression mon-

itoring. Science 286, 531–537.

Ma, J. and Stingo, F. C. and Hobbs, B. P. (2016). Bayesian predictive modeling for genomic based

personalized treatment selection. Biometrics 72, 575–583.

Yu, L. and Liu, H. Feature selection for high-dimensional data: A fast correlation-based filter

solution. In Proceedings of the 20th international conference on machine learning (ICML-03)

2003; 856-863.

8



Figure S.1: Differences in the true mean treatment utilities for simulated patients. Negative (positive) values indicate enhanced
effectiveness for treatment 1 (treatment 2).
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Figure S.2: Scatter (top) and density (bottom) plots for the transformed features based on one
simulated data set under scenario 2.
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Figure S.3: Scatter (top) and density (bottom) plots for the orginal features based on one simulated
data set under scenario 2.
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Figure S.4: Scatter (top) and density (bottom) plots for the random features based on one simulated
data set under scenario 2.
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