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Supplementary Fig. S1. Structures of telodendrimers with varying charge and hydrophobic

moieties.
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Supplementary Fig. S2. Particle size measurements for LPS trapped in telodendrimers. DLS (A-
C) and TEM (D-F, repeated twice independently with similar results) characterization of LPS (A
and D), telodendrimer PEG>*(ArgVE)s (B and E) and LPS loaded PEG**(ArgVE)s nanotrap (C
and F).
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Supplementary Fig. S3. Fluorescent polarization monitoring LPS complexation with TDs or

PMB. FITC-LPS (10 pg/mL, < CMC of LPS) form nanocomplex of PMB, PEG**(ArgC17)s, and

PEG°*(ArgVE)s in PBS monitored by the increased fluorescent polarization (duplicated, mean +

SD).



(A) LPS (endotoxin) binding energy (8) BSA (protein) binding energy
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Supplementary Fig. S4. Molecular interactions between LPS-TD and BSA-TD by molecular
docking. The average docking energy (an average of 100 docking runs) of different subunits of

TD with LPS (A) and BSA (B). The method was detailed in reference .
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Supplementary Fig. S5. Attenuation of DMAPs/PAMPs molecules. (A) Agarose gel

electrophoresis profiles of DNA (from fish sperm) and BSA loading by telodendrimer

(PEG>*(Arg:Rf)4). (B) Agarose gel electrophoresis profiles showing the attenuation of

protoporphyrin IX (PPIX) by a series of telodendrimers. (Experiments were repeated more than

three times with the similar results.)
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Supplementary Fig. S6. Synthetic scheme for solid phase synthesis of telodendrimers.
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Supplementary Fig. S7. Structural characterizations of TD intermediates synthesized on Rink
resin. (A) Stacked MALDI-TOF spectra of intermediates at each dendritic generation. (B)

MADLI-TOF spectrum of (ArgC17)s cleaved from Rink resin. (D) 'H NMR spectrum of
(ArgC17)4, recorded in DMSO-ds.
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Supplementary Fig. S8. LPS binding and removal efficiency by TD NT resins. (A) Fluorescent
microscopy images of FITC-LPS adsorption on PEGylated-polystyrene resin Tentagel (TG)
modified with different functionalities after 5 min incubation: the combination of charge and
hydrophobic moieties is essential for effective LPS adsorption (Scale bar: 100 um) Experiments
were repeated indecently for more than three times with the similar results.). (B) FITC-LPS
removal efficiency of PEGA resins modified with different functionalities (n=3, mean +/- SD). (C)
The LPS removal efficiency (2 h incubation in PBS) of PEGA-(ArgC17)4 resin after several cycles

of regeneration using 0.2 M NaOH in ethanol.
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(C) TN Kase (~45K) substrate: Y(NO,)ayGrGrrK(Abz) (D) Bead penetration of TN Kase (~45 kDa)
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Supplementary Fig. S9. Diffusion kinetics of proteins into PEGA and PVA-PEG resins. Trypsin
(24 kDa) and TNKase (Tenecteplase) (45 kDa) were used as model proteins. (A) Confocal



fluorescent images of Trypsin penetration into PEGA and PVA-PEG resin. (B) Kinetic penetration
depth vs. incubation time of Trypsin. (C) Confocal fluorescent images of TNKase penetration into
PEGA and PVA-PEG resin and (D) Kinetic penetration depth vs. incubation time of TNKase.
Kinetic diffusion rates of trypsin and TNKase in (E) PEGA and (F) PVA-PEGA resin, respectively.
(G) The diffusion co-efficient and relative selectivity of trypsin and TNKase in PVA-PEG resin
and PEGA resin: It revealed that PVA-PEG resin has large pore size than PEGA resin with faster
diffusion coefficient for both proteins. However, PVA-PEG resin has a lower selectivity towards
smaller protein, i.e. less exclusive for large protein, which will lead to more binding competition
by the abundant serum proteins. (Bead incubation and imaging were repeated twice independently

with the similar results)



(A) FITC-LPS removal from FBS (18 h) (B) FITC-LPS removal from blood (4 h)
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Supplementary Fig. S10. LPS removal efficiency after longer time incubation. FITC-LPS (12.5
pg/mL) was incubated with nanotrap hydrogel resins in comparison with other sorbent resins in

FBS (A) or whole blood (B) after 18 h and 4 h incubation, respectively (n=4, mean = SEM).
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Supplementary Fig. S11. The comparison of LPS adsorption on different resins. Fluorescent
microscopy images showed that adsorption of FITC-LPS in TD NT resin was the most efficient
than the control resins and commercial LPS-binding resins. Bead incubation and imaging were

repeated twice independently with the similar results.
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Supplementary Fig. S12. Molecular weights and isoelectric points (PIs) of key cytokines in
mouse. There are significant charge disparity in proinflammatory cytokines (negative charge) and

anti-inflammatory cytokines (positive charge).
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Supplementary Fig. S13. Selective protein adsorption and desorption determined by MALDI-
TOF MS. (A) MALDI-TOF MS analysis of the protein mixture solution of a-LA (0.5 mg/mL) and
BSA (5 mg/mL) before and after incubation with PEGA-(ArgC17)4 bead at bead/solution ratio of
1:10 (v/v) overnight: Significant reduction of a-LA by ~50% was observed relative to BSA,
leading to the saturation of resin with protein and the capacity was calculated to be 13 ug a-LA
per mg resin. (B) The MALDI-TOF MS spectrum of proteins eluted from PEGA-(ArgC17)4 resin
by 6 M guanidine treatment: only a-LA was detected without observable BSA signals.
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Supplementary Fig. S14 Survival of CLP male mice after treatments. (A) Survival of septic male
BLAB/c mice (n=10, 2 month age, male) induced by CLP treated with control saline, NT™" resin,
antibiotics imipenem/cilastatin (IMI, 50 mg/kg, 1:1 by weight) and the combination of NT™ with
antibiotics 3 h post-CLP. (B) Blood cell count analysis revealed the dynamic changes of the white
blood cells (WBC) in CLP mice with different treatments over time: mice treated with NT®/IMI
exhibited the most stable hemostasis (n=10 and reduced over time as shown in Fig. S14A, mean
+/- SEM). (Statistical significance was measured by unpaired one-sided student’s test: * p<0.05,
** p<0.01, *** p<0.001).
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Supplementary Fig. S15. Sepsis treatment in aged mice. The survival of CLP mice (n=5, 11
month old, female) treated with saline or antibiotics imipenem/cilastatin (IMI, 50 mg/kg) with or
without positively charged NT®) PEGA-(ArgC17)4 resin 3 h post-CLP. The survived animals were
sacrificed after 7-days observation.



(A) White blood cell count after surgery (B) Red blood cell count after surgery
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Supplementary Fig. S16. Biocompatibility of TD NT resins after in vivo implantation. The white
blood cell counts (A), red blood cell counts (B) and body weight changes (C) for mice with
intraperitoneal implantation of either positive charged PEGA-(Arg-L-C17)4 or negatively charged
PEGA-(COOH-L-C17)4resins in comparison to the sham mice and untreated mice: no significant
variations between groups for all three parameters over six months’ observation. (D) The histology
studies negative NT resin PEGA-(COOH-L-C17)4 within tissue after six months of in vivo

implantation: no active inflammation was observed around resins and partial degradation of resin



was observed (arrowed). (n=5, mean +/- SEM, Multiple tissue slices (n=5) were stained and

imaged with the similar results.
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