Supporting Information

Chlorinated Paraffins in Human Milk from Urban Sites in China, Sweden, and Norway

Yihui Zhou^{1,2}, Bo Yuan^{2*}, Elisabeth Nyberg³, Ge Yin^{2,4}, Anders Bignert⁵, Anders Glynn⁶, Jon Øyvind Odland⁷, Yanling Qiu⁸, Yajie Sun¹, Yongning Wu⁹, Qianfen Xiao¹, Daqiang Yin⁸, Zhiliang Zhu⁸, Jianfu Zhao¹, and Åke Bergman^{1,2,10}

¹ State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China

² Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden

³Department of Contaminants, Swedish Environmental Protection Agency, Virkesvägen 2, SE-106 48 Stockholm

⁴ Shimadzu Scientific Instrument Company, Shanghai, 200233, China

⁵ Department of Environmental Monitoring and Research, Swedish Museum of Natural History, Box 50007, SE-104 15 Stockholm, Sweden

⁶ Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7028, SE-75007 Uppsala, Sweden

⁷ Faculty of Health Sciences, Norwegian University of Science and Technology, Postboks 8905, N-7491 Trondheim, Norway

⁸ Key Laboratory of Yangtze River Water Environment (Ministry of Education), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China

⁹NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China

¹⁰ Department of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden

Svante Arrhenius väg 8, SE-10691 Stockholm, Sweden; bo.yuan@aces.su.se.

Pages: 24; Figures: 8; Tables: 6.

^{*} Corresponding author address and e-mail:

Table of Contents

Methods and Materials	
Sample storage	
Sample extraction and clean up	3
Instrumental analysis of CPs	4

Table S1. Theoretical number of positional isomers for polychlorinated <i>n</i> -alkanes	5
Table S2. Detailed information and CP concentrations in human milk	6
Table S3. CP technical product list involved in the present study	8
Table S4. Relative Contributions of CP technical products in pattern reconstruction	9
Table S5. Test statistics of Kruskal Wallis test grouped by sampling sites	12
Table S6. Estimated daily intake of CPs via breast-feeding of infants, and margin of exposure	. 15

Figure S1. Map of sampling sites and sampling years
Figure S2. Comparisons of carbon and chlorine profiles between blank and samples with CP
concentrations between LOD and LOQ17
Figure S3. Composition profiles of SCCPs, MCCPs, and LCCPs in human milk
Figure S4. Compositional profiles of carbon chain homologs among the CPs
Figure S5 Compositional profiles of the chlorine homolog series of CPs
Figure S6. Congener group patterns of chlorinated paraffins (CPs) in one human milk sample (Bodø-6)
from Norway and one CP commercial product (MP57) from the European market
Figure S7. Congener group patterns of chlorinated paraffins (CPs) in one human milk sample (Jiaxing-12)
from Jiaxing, China and one CP commercial product (YS CP52) from the Chinese market
Figure S8. Congener group patterns of chlorinated paraffins (CPs) in one human milk sample
(Shaoxing-12) from Shaoxing, China and one CP commercial product (MP52) from the European market

References	2)4
	•• ~	~ •

Methods and Materials

Sample storage

All samples were collected 2-12 weeks after giving birth. The target volume was at least 50 mL from each mother. Samples were subdivided into several portions and stored in the freezer below -18°C in glass bottles until chemical analysis. The Swedish samples were initially stored at -18°C in plastic bags and bottles. Upon being shipped to the Environmental Specimen Bank at the Swedish Museum of Natural History in Stockholm, samples were then thawed, transferred to pre-washed glass bottles with lids covered with aluminum foil, and stored at -20°C prior to analysis.

Sample extraction and clean up

The denaturation and extraction method followed Fängström, et al. ¹ with some minor modifications. ¹³C₁₀-1,5,5,6,6,10-hexachlorodecane (10 ng) was spiked as surrogate standard to the human milk samples (about 5 g) in a test tube (18 mL). The samples were homogenized with a solvent mixture of formic acid (6 M, 1 mL), isopropanol (6 mL) and diethyl ether mixed with n-hexane (6 mL, 1:1 v/v). After centrifugation for 5 minutes at 3000 rpm, the organic phase was transferred to a new tube (18 mL). The aquatic phase was extracted once more with isopropanol (1.5 mL) and diethyl ether/n-hexane (3 mL, 1:1 v/v). The combined organic phase was further washed twice with a sodium chloride solution (4 mL, 0.9%), whereas the aquatic phase was removed to a 15 mL tube. The combined aquatic phase was further extracted with diethyl ether/n-hexane (3 mL, 1:1 v/v) to get the analytes recovered to the organic phase. Finally, the combined organic phase was transferred to a pre-weighted beaker and lipid content was measured gravimetrically.

The lipids were dissolved with n-hexane (4 mL) in a test tube. Sulfuric acid (4 mL) was added to remove the lipids. The upper organic phase was taken out after inverting and centrifugation. The lower acid phase was partitioning once more with 4 mL n-hexane. The combined organic phase was concentrated to about 0.5 mL by a gentle nitrogen flow. A multi-layer column prepared in a Pasteur pipette packaged with activated silica gel (0.1) and silica gel impregnated with sulfuric acid (0.9 g, 2:1 w/w) from bottom to top was applied to further clean up. The column was preconditioned with n-hexane (3 mL), afterwards, the sample was applied to the column and eluted with n-hexane/dichloromethane (15 mL, 1:1 v/v). The collected solvent was evaporated to 1 mL by nitrogen flow. Silica gel column (deactivated with 3% water w/w, 4g, 0.063-0.2 mm Kiselgel 60) was applied to separate CPs from other nonpolar POPs described in detail elsewhere.² The column was discarded to remove

nonpolar POPs such as PCBs and HCB. The second fraction containing CPs was collected with n-hexane/diethyl ether (30 mL, 3:1 v/v). Prior to instrumental analysis, Dechlorane 603 (10 ng) was added to samples as volumetric standard. Three empty tubes were prepared as field blanks in China and tested for possible contamination. One procedural blank was analyzed in parallel with each batch of five samples to assess any potential contamination through the laboratory work.

Instrumental analysis of CPs

The recovery of ${}^{13}C_{10}$ -1,5,5,6,6,10-hexachlorodecane was analyzed by a Varian 450 gas chromatograph equipped with an electron capture detector (GC-ECD) and a Varian CP-8400 auto-sampler. Injections (1 µL) were performed on a programmable temperature vaporizing (PTV) injector operating in splitless mode at a temperature of 250 °C. CP-Sil 5CB column (15 m x 0.25 µm i.d. x 0.25µm film thickness; Varian capillary column) was used. Helium and nitrogen were used as carrier gas and make-up gas, respectively. The column oven temperature program was set as: 80 °C hold for 2 min, 15 °C/min to 300°C and hold for 8 min. Native CPs in human milk samples were analyzed using direct injection dichloromethane-enhanced APCI-QTOF-MS (QTOF Premier, Waters, UK) with same instrumental settings described in a previous study.³ We screened chloride adduct ions of 280 CP congener groups from C₉H₁₇Cl₃ to C₃₁H₅₂Cl₁₄ (C₉₋₃₁, Cl₂₋₁₄) in individual samples. C₉ and up to C₂₇ CPs were confirmed. Instrumental responses of the CP congener groups represented their profile of each sample.

We compared CP chain length ranges in the samples with those in a set of CP technical products (n = 65) and selected a sub-set of 16 products (Table S3) for quantification in this study, consisting of 5 SCCPs, 6 MCCPs, and 5 LCCPs. The CP congener group profile of each human milk samples was reconstructed by a deconvolution algorithm⁴ from the profiles of the selected technical products. Then percentage contributions of the technical products were used to calculate instrumental response factors of SCCPs, MCCPs, and LCCPs in the sample. Here concentrations of C₉ CPs were included in those of SCCPs, as they were considered as impurities of SCCPs.⁵ The performance of CP quantification was evaluated by the goodness of fit (\mathbb{R}^2) between the reconstructed profile and the native one. $\mathbb{R}^2 \ge 0.50$ indicates a valid quantification.^{4, 6} Quantification of all samples fulfilled the criterion (Table S4).

Table S1. Theoretical number of positional isomers for polychlorinated *n*-alkanes by assuming no more than one chlorine atom bound to any carbon atom. The calculation is based on Tomy et al. (1997).⁷ CP congeners are defined as individual chemicals identified by its exact structure, chirality not applied.

Chain length	$C_nH_{2n+2-m}Cl_m, m =$	Total number of positional congeners
10	1-10	527
11	1-11	1 055
12	1-12	2 079
13	1-13	4 159
14	1-14	8 255
15	1-15	16 511
16	1-16	32 895
17	1-17	65 791
18	1-18	131 327
19	1-19	262 655
20	1-20	524 799
21	1-21	1 049 599
22	1-22	2 098 175
23	1-23	4 196 351
24	1-24	8 390 655
25	1-25	16 781 311
26	1-26	33 558 527
27	1-27	67 117 055
28	1-28	134 225 919
29	1-29	268 451 839
30	1-30	536 887 295

	Sampling	Age of	Duration ^a		Age of	No. of	SCCP s	MCCPs	LCCPs
Sample ID	Date	Mother	(year)	Occupation	child ^b	children ^c	(ng g ⁻¹	(ng g ⁻¹	(ng g ⁻¹
	(уууу)	(year)	-		(day)		fat)	fat)	fat)
Shanghai-1	2015	30	10	Financial staff	39	1	664	1260	56.9
Shanghai-2	2015	38	8	Staff	47	2	33.4	37.9	15.0
Shanghai-3	2015	28	7	Planning designer	52	2	25.6	66.2	11.8
Shanghai-4	2015	31	9	Editor	34	2	89.2	129	16.9
Shanghai-5	2016	25	6	financial staff	43	1	19.9	50.9	20.8
Shanghai-6	2016	31	31	Architect	74	1	676	192	<lod< td=""></lod<>
Shanghai-7	2016	32	16	Teacher	54	2	36.6	76.3	1.83
Shanghai-8	2016	36	27	NA	46	1	16.8	73.9	7.44
Shanghai-9	2016	24	24	NA	NA	1	14.8	59.8	9.10
Shanghai-10	2016	27	27	NA	NA	1	38	56.4	3.49
Jiaxing-1	2015	30	10	Financial staff	59	2	16.7	32.3	12.4
Jiaxing-2	2015	28	28	Freelance	34	2	134	153	3.18
Jiaxing-3	2015	39	39	Freelance	49	2	140	70.1	18.4
Jiaxing-4	2015	35	12	Policeman	40	2	28.6	63	6.12
Jiaxing-5	2015	29	29	Bank employee	47	1	467	246	8.01
Jiaxing-6	2015	26	26	NA	40	2	21.9	51.3	8.71
Jiaxing-7	2016	40	40	Freelance	26	2	18.7	48.6	5.23
Jiaxing-8	2016	28	28	Staff	57	1	11.6	35.3	3.14
Jiaxing-9	2016	27	27	Accountant	45	1	620	263	1.53
Jiaxing-10	2016	28	28	Teacher	51	1	642	335	<lod< td=""></lod<>
Jiaxing-11	2016	30	30	Teacher	38	1	17.9	28.0	<lod< td=""></lod<>
Jiaxing-12	2016	40	21	NA	43	2	171	547	<lod< td=""></lod<>
Jiaxing-13	2016	28	28	Staff	29	2	<lod< td=""><td>16.1</td><td>6.79</td></lod<>	16.1	6.79
Shaoxing-1	2010	20-25	>10	NA	NA	1	21.2	53.1	46.9
Shaoxing-2	2010	20-25	>10	NA	NA	1	31.9	55.9	4.89
Shaoxing-3	2010	20-25	>10	NA	NA	1	28.7	89.7	15.7
Shaoxing-4	2010	20-25	>10	NA	NA	1	<lod< td=""><td>37.5</td><td>9.91</td></lod<>	37.5	9.91
Shaoxing-5	2010	20-25	>10	NA	NA	1	81.2	132	7.94
Shaoxing-6	2010	20-25	>10	NA	NA	1	66.1	121	184
Shaoxing-7	2010	20-25	>10	NA	NA	1	37.9	123	12.6
Shaoxing-8	2010	20-25	>10	NA	NA	1	64.7	121	14.6
Shaoxing-9	2010	20-25	>10	NA	NA	1	124	187	22.8
Shaoxing-10	2010	20-25	>10	NA	NA	1	43.5	86.0	120
Shaoxing-11	2010	20-25	>10	NA	NA	1	52.5	125	7.94
Shaoxing-12	2010	20-25	>10	NA	NA	1	17.3	139	8.90
Shaoxing-13	2010	20-25	>10	NA	NA	1	<lod< td=""><td>81.3</td><td>15.3</td></lod<>	81.3	15.3

Table S2. Detailed information and CP concentrations in human milk from Shanghai, Jiaxing,Shaoxing (China), Stockholm (Sweden), and Bodø (Norway).

	Sampling	Age of	D		Age of	N	SCCP s	MCCPs	LCCPs
Sample ID	Date	Mother	Duration "	Occupation	child ^b	No. of	(ng g ⁻¹	(ng g ⁻¹	(ng g ⁻¹
	(уууу)	(year)	(year)		(day)	children	fat)	fat)	fat)
Stockholm2016-1	2016	34	>10	NA	NA	1	<lod< td=""><td>21.1</td><td>7.46</td></lod<>	21.1	7.46
Stockholm2016-2	2016	27	>10	NA	NA	1	20.0	19.2	4.53
Stockholm2016-3	2016	31	>10	NA	NA	1	<lod< td=""><td>21.0</td><td><lod< td=""></lod<></td></lod<>	21.0	<lod< td=""></lod<>
Stockholm2016-4	2016	31	>10	NA	NA	1	13.8	<lod< td=""><td>1.65</td></lod<>	1.65
Stockholm2016-5	2016	26	>10	NA	NA	1	11.7	27.4	1.70
Stockholm2016-6	2016	26	>10	NA	NA	1	27.8	17.2	9.34
Stockholm2016-7	2016	25	>10	NA	NA	1	<lod< td=""><td>60</td><td>8.32</td></lod<>	60	8.32
Stockholm2016-8	2016	27	>10	NA	NA	1	<lod< td=""><td>29.6</td><td>2.80</td></lod<>	29.6	2.80
Stockholm2016-9	2016	27	>10	NA	NA	1	<lod< td=""><td>19.1</td><td><lod< td=""></lod<></td></lod<>	19.1	<lod< td=""></lod<>
Stockholm2011-1	2011	30	>10	NA	NA	1	23.3	71	21.4
Stockholm2011-2	2011	31	>10	NA	NA	1	15.4	26.9	4.43
Stockholm2011-3	2011	31	>10	NA	NA	1	15.8	36.7	4.14
Stockholm2011-4	2011	31	>10	NA	NA	1	14.0	17.3	<lod< td=""></lod<>
Stockholm2011-5	2011	30	>10	NA	NA	1	12.9	34.7	8.92
Stockholm2011-6	2011	31	>10	NA	NA	1	24.1	77.7	6.58
Stockholm2011-7	2011	30	>10	NA	NA	1	19.0	38.0	1.84
Stockholm2011-8	2011	29	>10	NA	NA	1	18.8	19.2	1.50
Stockholm2011-9	2011	30	>10	NA	NA	1	11.8	53.7	5.26
Stockholm2011-10	2011	31	>10	NA	NA	1	14.4	42.1	3.01
Bodø-1	2014	37	>10	Cashier	77	NA	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Bodø-2	2014	27	>10	Store's manager	84	NA	120	88.3	29
Bodø-3	2014	40	3.5	Network Administrator	84	NA	<lod< td=""><td>52.4</td><td>4.35</td></lod<>	52.4	4.35
Bodø-4	2014	32	>10	DNB bank ASA	150	NA	<lod< td=""><td>16.4</td><td>2.46</td></lod<>	16.4	2.46
Bodø-5	2014	30	10	Barber	NA	NA	22.3	28.3	4.95
Bodø-6	2014	39	>10	Accountant	63	NA	<lod< td=""><td>311</td><td><lod< td=""></lod<></td></lod<>	311	<lod< td=""></lod<>
Bodø-7	2014	36	>10	Barber	98	NA	24.3	35.5	10.8
Bodø-8	2014	41	>10	Dentist	70	NA	20.4	50.6	4.17

^a number of years living at the current place of residence;

^b time of sampling after parturition

^c number of children.

NA: not available.

LODs of SCCPs, MCCPs, and LCCPs are 11.5, 15.7, and 1.09 ng g^{-1} fat in this study, respectively.

			-	•
Category	Product	Manufacturer	Country	Ingredients*
SCCPs	SCCP 51.5 %Cl	Ehrenstorfer GmbH	Germany	C ₁₀₋₁₃ 51.5% Cl
	SCCP 55.5 %Cl	Ehrenstorfer GmbH	Germany	C ₁₀₋₁₃ 55.5% Cl
	SCCP 63.0 %Cl	Ehrenstorfer GmbH	Germany	C ₁₀₋₁₃ 63.0% Cl
	Witaclor 149	Dynamit Nobel AG	Germany	C ₁₀₋₁₃ 49% Cl
	Hüls 70C	Hüls AG	Germany	C ₁₀₋₁₃ 70% Cl
MCCPs	MP42	Ehrenstorfer GmbH	Germany	C ₁₄₋₁₇ 42.0% Cl
	MP52	Ehrenstorfer GmbH	Germany	C ₁₄₋₁₇ 52.0% Cl
	MP57	Ehrenstorfer GmbH	Germany	C ₁₄₋₁₇ 57.0% Cl
	Cloparin 49st	Caffaro	Italy	C ₁₄₋₁₇ 49% Cl
	Cloparin 50	Caffaro	Italy	C14-17 50% Cl
	CereclorS52	INEOS Chlor Ltd.	UK	C ₁₄₋₁₇ 52% Cl
	YS CP52	unknown	China	C ₁₄ 52% Cl
LCCPs	Hüls 40N	Hüls AG	Germany	C ₁₈₋₂₆ 40% Cl
	Witaclor 549	Dynamit Nobel AG	Germany	C ₁₈₋₂₅ 49% Cl
	Unichlor 40	Neville Chemical Co.	USA	C ₂₂₋₂₇ 40 %Cl
	LCCP 36.0 %Cl	Ehrenstorfer GmbH	Germany	C ₁₈₋₂₀ 36.0% Cl
	LCCP 49.0 %Cl	Ehrenstorfer GmbH	Germany	C ₁₈₋₂₀ 49.0% Cl

Table S3. CP technical product list involved in the present study.

* specifications from the manufacturer.

	Site	R ²	SCCP 51.5%Cl	SCCP 55.5%Cl	SCCP 63.0%Cl	Witaclor 149	Hüls 70C	MP42	MP52	MP57	Cloparin 49st	Cloparin 50	Cereclor S52	LCCP 36%Cl	LCCP 49%Cl	Witaclor 549	Hüls 40N	Uniclor 40
	Shanghai-1	0.76	7%	9%	0%	18%		24%	16%		23%			2%	0%			
	Shanghai-2	0.87		35%	7%		1%	1%	29%		2%	13%		1%	11%	3%		
	Shanghai-3	0.89		29%	4%	0%	0%	11%	46%					3%	5%	1%		
	Shanghai-4	0.51		30%	8%	1%		3%	43%		3%	5%			7%			
	Shanghai-5	0.78	3%	21%	3%	1%	2%		45%			7%			17%			
	Shanghai-6	0.57			3%	43%		14%	9%	21%		9%						0%
	Shanghai-7	0.87		19%	3%	3%	0%	14%		56%	5%				1%			
	Shanghai-8	0.84	22%		2%		0%	3%	60%		1%	5%			6%			
	Shanghai-9	0.82	0%	12%	5%	10%	1%	25%		28%	14%			2%	2%			
_	Shanghai-10	0.78		11%	2%	18%	0%	21%		20%		27%			1%			
	Jiaxing-1	0.77	0%	17%	5%	11%		12%	28%			11%		15%	2%			
	Jiaxing-2	0.50		12%	4%	22%		41%		18%					3%			
	Jiaxing-3	0.68		26%	2%	31%		4%	7%			22%			8%			
	Jiaxing-4	0.88	1%	27%	0%	3%	1%	22%	27%			14%			5%			
	Jiaxing-5	0.67		11%	2%	51%		13%	16%			6%			1%			
	Jiaxing-6	0.89		15%	6%	7%		22%		40%	5%			1%	3%			
	Jiaxing-7	0.88	0%	16%	5%	5%	2%	21%		39%	2%	6%			3%			
	Jiaxing-8	0.83		18%	0%	6%	1%	7%		34%	0%	32%			2%			
	Jiaxing-9	0.68			1%	55%		30%	12%	1%					0%			
	Jiaxing-10	0.50		16%	5%	34%		32%		14%								
	Jiaxing-11	0.74		22%	5%	14%	5%	27%	16%			10%			1%			
	Jiaxing-12	0.91		15%	3%			9%		73%					0%			
	Jiaxing-13	0.89	0%	17%	6%	4%	0%	4%		44%	5%	13%			6%		0%	

Table S4. Relative Contributions of CP technical products in pattern reconstruction of individual human milk samples.

Site	R^2	SCCP 51.5%Cl	SCCP 55.5%Cl	SCCP 63.0%Cl	Witaclor 149	Hüls 70C	MP42	MP52	MP57	Cloparin 49st	Cloparin 50	Cereclor S52	LCCP 36%Cl	LCCP 49%Cl	Witaclor 549	Hüls 40N	Uniclor 40
Shaoxing-1	0.86		19%	4%	1%	2%	2%	16%			26%			28%	2%		
Shaoxing-2	0.88		29%	7%	1%			55%						9%			
Shaoxing-3	0.89	13%	5%	4%	0%	1%		62%		1%			0%	9%	4%	1%	
Shaoxing-4	0.84	4%	20%	4%	8%	2%	4%	36%		9%	2%		3%	8%			
Shaoxing-5	0.90		19%		18%	1%	1%	57%					1%	2%			
Shaoxing-6	0.72		18%	1%	1%	1%		19%			14%			43%	0%	3%	
Shaoxing-7	0.91	20%	4%	2%	0%	1%	15%	36%		1%	15%		0%	6%		0%	
Shaoxing-8	0.81	30%	3%	2%	1%	2%	9%	44%			3%			6%			
Shaoxing-9	0.82	21%	10%	1%		0%	16%	3%	32%	1%	5%	7%	0%	3%			
Shaoxing-10	0.86	6%	7%	4%	0%	0%		33%		1%	3%		0%	7%	23%	5%	8%
Shaoxing-11	0.94	14%	9%	5%	1%	1%		65%		1%			0%	3%		1%	
Shaoxing-12	0.98	3%	9%	1%	0%	0%	19%	62%					1%	3%	2%		
Shaoxing-13	0.92	3%	14%		0%	1%		49%			21%			12%			
Stockholm2016-1	0.77	1%	24%	3%	4%	2%	32%	12%		8%			2%	11%	1%		
Stockholm2016-2	0.77		6%	7%	30%	5%	14%	24%		7%	0%		5%	3%			
Stockholm2016-3	0.83	19%		8%	1%	4%	39%	18%			8%			3%			
Stockholm2016-4	0.78		11%	4%	16%	7%	19%	11%		8%	10%		1%	8%	4%		
Stockholm2016-5	0.89		13%	5%	15%	4%	24%	22%			14%			3%			
Stockholm2016-6	0.69		9%	6%	32%	5%	15%	15%		6%				12%			
Stockholm2016-7	0.75	13%	5%	4%	0%	1%	51%	12%		1%	6%			8%		0%	
Stockholm2016-8	0.85		19%	1%	1%	3%	16%	47%		1%	8%		3%	2%			
Stockholm2016-9	0.65	20%	12%	7%	1%	2%	34%	9%		1%	13%		0%	0%			
Stockholm2011-1	0.76	0%	12%	1%	4%	5%	48%	8%			7%			3%	12%	0%	
Stockholm2011-2	0.86		9%	4%	13%	6%	13%	39%			8%		1%	5%			

Site	R ²	CCP 51.5%Cl	CCP 55.5%Cl	CCP 63.0%Cl	Witaclor 149	Hüls 70C	MP42	MP52	MP57	Cloparin 49st	Cloparin 50	Cereclor S52	LCCP 36%Cl	LCCP 49%Cl	Witaclor 549	Hüls 40N	Uniclor 40
Stockholm2011-3	0.67	•1	19%	•1	8%	2%	46%	20%						5%			
Stockholm2011-4	0.78		16%	2%	13%	5%	52%	8%						3%			
Stockholm2011-5	0.85	10%	4%	5%	1%	5%	58%			0%	5%		7%	5%			
Stockholm2011-6	0.80	0%	22%	1%	2%	2%	60%	5%		1%	2%		3%	3%			
Stockholm2011-7	0.72		17%	3%	16%	6%	47%				9%			3%			
Stockholm2011-8	0.76		18%	4%	21%	7%	30%	7%			9%			4%			
Stockholm2011-9	0.83		17%	2%	1%	2%	51%	13%		1%	6%		2%	5%			
Stockholm2011-10	0.81	15%	7%	6%	0%	1%	58%	7%		1%				0%	4%	1%	
Bodø-1	0.69	0%	21%	3%	12%	12%	25%	0%		5%	20%		1%	1%			
Bodø-2	0.69	43%	6%		1%	1%	27%	9%		2%					7%	2%	
Bodø-3	0.91	10%	6%	3%	0%	1%	69%	5%		0%			0%	5%			
Bodø-4	0.71		21%	3%	12%	5%	33%	11%			10%		2%	4%			
Bodø-5	0.79	0%	18%	5%	7%	8%	24%	16%			15%		5%	2%			
Bodø-6	0.94		0%	0%	1%		0%		98%	0%							
Bodø-7	0.74		8%	6%	20%	3%	31%	12%		6%			4%	5%	4%		
Bodø-8	0.89	0%	8%	3%	16%	4%	20%	16%		7%	21%		2%	4%			

Variable	n	Group	Chi-S quare	Asymp.	ymp. Variable n Group Chi-Square		Chi-S quare	Asymp.	
C9H18Cl2	63	6	0.000	51g.	C13H20C18	63	6	20.954	0.001
C9H17C13	63	6	5 713	0.335	C13H19C19	63	6	1 960	0.855
C9H16C14	63	6	29 358	0.000	C13H18C110	63	6	0.926	0.055
C9H15C15	63	6	37 739	0.000	C13H17C111	63	6	11.876	0.037
C9H14C16	63	6	19 131	0.002	C13H16C112	63	6	4 098	0.535
C9H13C17	63	6	9 516	0.002	C13H15C113	63	6	0.000	1.000
C9H12C18	63	6	15 326	0.000	C13H14C114	63	6	0.000	1.000
C9H11C19	63	6	5 581	0.007	C1/H28Cl2	63	6	5 395	0.370
C10H19Cl3	63	6	5 867	0.349	C14H27Cl3	63	6	32 074	0.000
C10H18Cl4	63	6	20.874	0.01	C14H26CW	63	6	35.749	0.000
C10H17Cl5	63	6	20.874	0.001	C14H25Cl5	63	6	17 953	0.000
	63	6	29.952	0.000	C14H24Cl6	63	6	11.555	0.003
C10H15Cl7	63	6	29.005	0.000	C14H23Cl7	63	6	20.008	0.040
C10H14Cl8	63	6	7 101	0.001	C14H22C18	63	6	18 250	0.001
C10H13Cl0	63	6	12 523	0.207	C14H21Cl0	63	6	8 412	0.005
C10H12C110	63	6	8 680	0.028	C14H20C110	63	6	0.771	0.135
C10H11C111	63	6	14 630	0.122	C14H10C111	63	6	0.771	0.979
C10H10C112	63	6	5 874	0.012	C14H19C112	63	6	5.475	0.092
C11H21Cl3	63	6	5.874	0.319	C14H17C113	63	6	0.000	1.000
C11H20Cl4	63	6	15 205	0.200	C14H16C114	63	6	0.000	1.000
C11H10Cl5	63	6	16.035	0.010	C15H30Cl2	63	6	5.022	0.413
	63	6	0.015	0.005	C15H20Cl2	63	6	31.022	0.413
C11H17Cl7	62	0	9.013	0.108	C15H29Cl3	62	6	31.923	0.000
	63	6	9.380	0.095	C15H27Cl5	63	6	30.044	0.000
C11H15Cl0	63	6	16 512	0.000	C15H26Cl6	63	6	5 784	0.000
C11H14C110	63	6	28 552	0.000	C15H25Cl7	63	6	J.784	0.528
C11H13C111	63	6	6 6 5 5	0.000	C15H24Cl8	63	6	7.797	0.100
C11H12C112	63	6	1 3 4 1	0.248	C15H23Cl0	63	6	1 312	0.199
C12H24Cl2	63	6	1.341	0.931	C15H22C110	63	6	1.512	0.934
C12H23Cl3	63	6	2 176	0.033	C15H21C111	63	6	5 566	0.351
C12H22Cl4	63	6	2.170	0.824	C15H20C112	63	6	5.500	0.354
C12H22Cl4	62	6	6.100	0.232	C15H10C112	62	6	0.000	1.000
C12H2ICI3	62	0	0.190	0.200	C15H19C114	62	6	0.000	1.000
C12H10Cl7	63	6	2.448	0.784	C16H32Cl2	63	6	0.000	1.000
C12H18C18	63	6	2 449	0.031	C16H31Cl3	63	6	16 401	0.006
C12H17Cl9	63	6	2.449	0.784	C16H30Cl4	63	6	31.864	0.000
C12H16C110	63	6	10.064	0.004	C16H20Cl5	63	6	25 621	0.000
C12H15C111	63	6	3 036	0.075	C16H29Cl5	63	6	5 787	0.000
C12H14C112	62	6	5.930	0.339	C16H27Cl7	62	6	5.787	0.327
C12H14CH2	62	0	0.970	1.000	C16H26C18	62	6	4.850	0.304
C12H13C114	62	0	0.000	1.000	C16H25Cl0	62	6	4.639	0.455
C12H12CI14	62	0	0.000 8.452	0.122	C16H24C110	62	6	0.755	0.037
C13H25Cl2	62	0	0.4JJ 5 842	0.155	C16H22C111	62	0	0.133 7 277	0.960
	62	0	0.045	0.322		62	0	0.000	0.194
C13H22Clf	03 62	0	7.033 5.002	0.080	C16U21CU2	03 62	0	0.009	1.000
C13H23CB	03 62	0	J.070	0.51/		03 62	0	0.000	1.000
$C13\Pi 22Cl0$	03 62	0 E	20.075	0.044		03 62	0 E	0.000	1.000
CISH2ICI/	03	0	20.075	0.001	CI/II34CI2	03	0	0.000	1.000

Table S5. Test statistics of Kruskal Wallis test grouped by sampling sites

Variable	n	Group	Chi-S quare	Asymp. Sig	Variable	n	Group	Chi-S quare	Asymp. Sig
C17H33Cl3	63	6	6.698	0.244	C20H31Cl11	63	6	6.267	0.281
C17H32Cl4	63	6	17.194	0.004	C20H30Cl12	63	6	4.595	0.467
C17H31Cl5	63	6	16.034	0.007	C20H29Cl13	63	6	0.000	1.000
C17H30Cl6	63	6	7.506	0.186	C20H28Cl14	63	6	0.000	1.000
C17H29Cl7	63	6	2.656	0.753	C21H42Cl2	63	6	0.000	1.000
C17H28Cl8	63	6	3.752	0.586	C21H41Cl3	63	6	9.574	0.088
C17H27Cl9	63	6	8.487	0.131	C21H40Cl4	63	6	7.555	0.183
C17H26Cl10	63	6	2.888	0.717	C21H39Cl5	63	6	4.445	0.487
C17H25Cl11	63	6	1.515	0.911	C21H38Cl6	63	6	7.976	0.158
C17H24Cl12	63	6	5.935	0.313	C21H37Cl7	63	6	2.672	0.750
C17H23Cl13	63	6	0.000	1.000	C21H36Cl8	63	6	2.558	0.768
C17H22Cl14	63	6	0.000	1.000	C21H35Cl9	63	6	6.550	0.256
C18H36Cl2	63	6	0.000	1.000	C21H34Cl10	63	6	2.879	0.719
C18H35Cl3	63	6	2.708	0.745	C21H33Cl11	63	6	12.207	0.032
C18H34Cl4	63	6	3.314	0.652	C21H32Cl12	63	6	5.743	0.332
C18H33Cl5	63	6	8.847	0.115	C21H31Cl13	63	6	0.000	1.000
C18H32Cl6	63	6	12.606	0.027	C21H30Cl14	63	6	0.000	1.000
C18H31Cl7	63	6	9.694	0.084	C22H44Cl2	63	6	3.846	0.572
C18H30Cl8	63	6	6.147	0.292	C22H43Cl3	63	6	4.143	0.529
C18H29Cl9	63	6	3.138	0.679	C22H42Cl4	63	6	4.516	0.478
C18H28Cl10	63	6	5.837	0.322	C22H41Cl5	63	6	5.743	0.332
C18H27Cl11	63	6	2.992	0.701	C22H40Cl6	63	6	5.673	0.339
C18H26Cl12	63	6	6.061	0.300	C22H39Cl7	63	6	5.743	0.332
C18H25Cl13	63	6	0.000	1.000	C22H38Cl8	63	6	5.673	0.339
C18H24Cl14	63	6	0.000	1.000	C22H37Cl9	63	6	5.673	0.339
C19H38Cl2	63	6	0.000	1.000	C22H36Cl10	63	6	3.656	0.600
C19H37Cl3	63	6	2.594	0.762	C22H35Cl11	63	6	3.609	0.607
C19H36Cl4	63	6	7.863	0.164	C22H34Cl12	63	6	3.609	0.607
C19H35Cl5	63	6	6.478	0.262	C22H33Cl13	63	6	0.000	1.000
C19H34Cl6	63	6	8.537	0.129	C22H32Cl14	63	6	0.000	1.000
C19H33Cl7	63	6	12.985	0.024	C23H46Cl2	63	6	3.846	0.572
C19H32Cl8	63	6	7.590	0.180	C23H45Cl3	63	6	0.000	1.000
C19H31Cl9	63	6	3.403	0.638	C23H44Cl4	63	6	3.846	0.572
C19H30Cl10	63	6	3.287	0.656	C23H43Cl5	63	6	3.609	0.607
C19H29Cl11	63	6	5.069	0.407	C23H42Cl6	63	6	7.816	0.167
C19H28Cl12	63	6	4.624	0.463	C23H41Cl7	63	6	5.821	0.324
C19H27Cl13	63	6	0.000	1.000	C23H40Cl8	63	6	7.816	0.167
C19H26Cl14	63	6	0.000	1.000	C23H39Cl9	63	6	5.743	0.332
C20H40Cl2	63	6	0.000	1.000	C23H38Cl10	63	6	3.656	0.600
C20H39Cl3	63	6	1.651	0.895	C23H37Cl11	63	6	3.846	0.572
C20H38Cl4	63	6	6.531	0.258	C23H36Cl12	63	6	3.846	0.572
C20H37Cl5	63	6	7.529	0.184	C23H35Cl13	63	6	0.000	1.000
C20H36Cl6	63	6	6.710	0.243	C23H34Cl14	63	6	0.000	1.000
C20H35Cl7	63	6	11.314	0.045	C24H48Cl2	63	6	5.300	0.380
C20H34Cl8	63	6	5.255	0.386	C24H47Cl3	63	6	3.656	0.600
C20H33Cl9	63	6	3.644	0.602	C24H46Cl4	63	6	3.609	0.607
C20H32Cl10	63	6	4.896	0.429	C24H45Cl5	63	6	7.816	0.167

Table S5. (Cont.) Test statistics of Kruskal Wallis Test grouped by sampling sites

Variable	n	Group	Chi-S quare	Asymp. Sig.	Variable	n	Group	Chi-S quare	Asymp. Sig.
C24H44Cl6	63	6	3.846	0.572	C26H43Cl11	63	6	0.000	1.000
C24H43Cl7	63	6	5.743	0.332	C26H42Cl12	63	6	3.846	0.572
C24H42Cl8	63	6	7.816	0.167	C26H41Cl13	63	6	0.000	1.000
C24H41Cl9	63	6	7.816	0.167	C26H40Cl14	63	6	0.000	1.000
C24H40Cl10	63	6	7.816	0.167	C26H39Cl15	63	6	0.000	1.000
C24H39Cl11	63	6	3.846	0.572	C27H54Cl2	63	6	5.146	0.398
C24H38Cl12	63	6	7.816	0.167	C27H53Cl3	63	6	2.952	0.707
C24H37Cl13	63	6	0.000	1.000	C27H52Cl4	63	6	3.846	0.572
C24H36Cl14	63	6	0.000	1.000	C27H51Cl5	63	6	3.846	0.572
C25H50Cl2	63	6	0.000	1.000	C27H50Cl6	63	6	3.846	0.572
C25H49Cl3	63	6	0.000	1.000	C27H49Cl7	63	6	3.846	0.572
C25H48Cl4	63	6	3.846	0.572	C27H48Cl8	63	6	3.846	0.572
C25H47Cl5	63	6	0.000	1.000	C27H47Cl9	63	6	3.846	0.572
C25H46Cl6	63	6	7.816	0.167	C27H46Cl10	63	6	3.846	0.572
C25H45Cl7	63	6	2.442	0.785	C27H45Cl11	63	6	3.846	0.572
C25H44Cl8	63	6	7.816	0.167	C27H44Cl12	63	6	3.846	0.572
C25H43Cl9	63	6	7.816	0.167	C27H43Cl13	63	6	0.000	1.000
C25H42Cl10	63	6	7.816	0.167	C27H52Cl4	63	6	3.846	0.572
C25H41Cl11	63	6	3.846	0.572	C27H51Cl5	63	6	3.846	0.572
C25H40Cl12	63	6	7.816	0.167	C27H50Cl6	63	6	3.846	0.572
C25H39Cl13	63	6	0.000	1.000	C27H49Cl7	63	6	3.846	0.572
C25H38Cl14	63	6	0.000	1.000	C27H48Cl8	63	6	3.846	0.572
C26H52Cl2	63	6	3.846	0.572	C27H47Cl9	63	6	3.846	0.572
C26H51Cl3	63	6	0.000	1.000	C27H46Cl10	63	6	3.846	0.572
C26H50Cl4	63	6	3.846	0.572	C27H45Cl11	63	6	3.846	0.572
C26H49Cl5	63	6	3.846	0.572	C27H44Cl12	63	6	3.846	0.572
C26H48Cl6	63	6	0.000	1.000	C27H43Cl13	63	6	0.000	1.000
C26H47Cl7	63	6	3.846	0.572	C27H42Cl14	63	6	0.000	1.000
C26H46Cl8	63	6	0.000	1.000	C27H41Cl15	63	6	0.000	1.000
C26H45Cl9	63	6	3.846	0.572	C27H40Cl16	63	6	0.000	1.000
C26H44Cl10	63	6	0.000	1.000					

Table S5. (Cont.) Test statistics of Kruskal Wallis Test grouped by sampling sites

		China	Sweden	Norway
		n=36	n=20	n=8
Mean conce	entration (ng g fat ⁻¹)			
SCCPs		124	12.8	23.4
MCCPs		146	33.3	72.8
LCCPs		19.1	4.89	6.97
EDI (ng (kg	$(g BW)^{-1} day^{-1})$			
SCCPs	average consumption	570	58.7	107
	high consumption	856	88.0	161
MCCPs	average consumption	669	153	334
	high consumption	1000	229	501
LCCPs	average consumption	87.7	22.4	32.0
	high consumption	132	33.6	48.0
MOE (EU)				
SCCPs	average consumption	4030	39200	21400
	high consumption	2690	26100	14300
MCCPs	average consumption	53800	236000	108000
	high consumption	35900	157000	71800
MOE (ECC	C)			
MCCPs	average consumption	8970	39300	18000
	high consumption	5980	26200	12000
LCCPs	average consumption	810000	3170000	2220000
	high consumption	540000	2110000	1480000

Table S6. Estimated daily intake [EDI, $ng (kg BW)^{-1} day^{-1}$] of CPs via breast-feeding of infants, and margin of exposure (MOE, dimensionless).⁷

The EDI was estimated based on the calculation method given in EFSA (2019), and the BMDL₁₀ value for SCCPs and MCCPs proposed by EFSA is 2.3 and 36 mg (kg BW)⁻¹ day⁻¹, respectively.⁷ The LOEL value for MCCPs and LCCPs, respectively, proposed by Environment and Climate Change Canada, is 6 and 71 mg (kg BW)⁻¹ day^{-1.8}

Figure S1. Map of sampling sites and sampling years. Left) map of Norway and Sweden, samples were collected in Bodø in 2014 and in Stockholm in 2011 and 2016. Right) map of the Yangtze River Delta, China, samples were collected in Shanghai in 2015-2016, Jiaxing in 2015-2016, and Shaoxing in 2010.

Figure S2. Comparisons of carbon and chlorine profiles between blank (mean) and samples with CP concentrations between LOD and LOQ. There are five samples, consisting of two Chinese, two Swedish, and one Norwegian samples. The instrumental intensities of C- and Cl-homologues in the five samples are higher than in the mean blank by an average factor of 10 for both C_{11-14} and Cl_{4-7} homologues.

Figure S3. Composition profiles of SCCPs, MCCPs, and LCCPs in human milk from Jiaxing, Shanghai, and Shaoxing in China, Stockholm in Sweden, and Bodø in Norway.

Figure S4. Compositional profiles of carbon chain homologs among the CPs assessed showing the occurrence of C_{9-27} .

Figure S5 Compositional profiles of the chlorine homolog series of CPs assessed showing Cl_{2-14} in mothers' milk from Jiaxing, Shanghai, Shaoxing, Stockholm, and Bodø.

Figure S6. Congener group patterns of chlorinated paraffins (CPs) in one human milk sample (Bodø-6) from Norway and one CP commercial product (MP57) from the European market. The diagram in the upper right corner showed a significant positive correlation (R^2 =0.94, p<0.01) between Bodø-6 and MP57.

Figure S7. Congener group patterns of chlorinated paraffins (CPs) in one human milk sample (Jiaxing-12) from Jiaxing, China and one CP commercial product (YS CP52) from the Chinese market. The diagram in upper right corner showed a significant positive correlation (R^2 =0.89, p<0.01) between Jiaxing-12 and YS CP52).

Figure S8. Congener group patterns of chlorinated paraffins (CPs) in one human milk sample (Shaoxing-12) from Shaoxing, China and one CP commercial product (MP52) from the European market. The diagram in the upper right corner showed a significant positive correlation (R^2 =0.91, *p*<0.01) Shaoxing-12 and MP52.

References

1. Fängström, B.; Strid, A.; Grandjean, P.; Weihe, P.; Bergman, Å., A retrospective study of PBDEs and PCBs in human milk from the Faroe Islands. *Environ. Health-Glob* **2005**, *4*, (1), 12.

2. Zhou, Y. H.; Asplund, L.; Yin, G.; Athanassiadis, I.; Wideqvist, U.; Bignert, A.; Qiu, Y. L.; Zhu, Z. L.; Zhao, J. F.; Bergman, A., Extensive organohalogen contamination in wildlife from a site in the Yangtze River Delta. *Sci. Total Environ.* **2016**, *554*, 320-328.

 Du, X.; Yuan, B.; Zhou, Y; Benskin, J. P.; Qiu, Y; Yin, G.; Zhao, J., Short-, Medium-, and Long-Chain Chlorinated Paraffins in Wildlife from Paddy Fields in the Yangtze River Delta. *Environ. Sci. Technol.* 2018, *52*, (3), 1072-1080.

4. Bogdal, C.; Alsberg, T.; Diefenbacher, P. S.; MacLeod, M.; Berger, U., Fast quantification of chlorinated paraffins in environmental samples by direct injection high-resolution mass spectrometry with pattern deconvolution. *Anal. Chem.* **2015**, *87*, (5), 2852-60.

5. Yuan, B.; Brüchert, V.; Sobek, A.; de Wit, C. A., Temporal Trends of C8–C36 Chlorinated Paraffins in Swedish Coastal Sediment Cores over the Past 80 Years. *Environ. Sci. Technol.* **2017**, *51*, (24), 14199-14208.

6. Brandsma, S. H.; van Mourik, L.; O'Brien, J. W.; Eaglesham, G.; Leonards, P. E.; de Boer, J.; Gallen, C.; Mueller, J.; Gaus, C.; Bogdal, C., Medium-Chain Chlorinated Paraffins (CPs) Dominate in Australian Sewage Sludge. *Environ. Sci. Technol.* **2017**, *51*, (6), 3364-3372.

7. EFSA, Scientific opinion on the risk for animal and human health related to the presence of chlorinated paraffins in feed and food.

https://www.efsa.europa.eu/sites/default/files/consultation/consultation/EFSA_CONTAM_Chlorinated_paraffins_.pdf. [accessed: 16 November 2019]. 2019.

8. EnvironmentCanada, Canadian Environmental Protection Act: priority substances list assessment report chlorinated paraffins.

http://www.hc-sc.gc.ca/ewh-semt/alt_formats/hecs-sesc/pdf/pubs/contaminants/psl1-lsp1/paraffins-paraffines/pa raffins-paraffines-eng.pdf [accessed:27 February 2019]. Canada. 1993.