

Plant Tissues as 3D Natural Scaffolds for Adipose, Bone and Tendon Tissue Regeneration

Supplementary Material

Supplementary Data

Supplementary Data 1: SEM micrographs of apple (AP_{ctr}), carrot (CA_{ctr}) and celery (CE_{ctr}) in comparison to decellularized apple (AP_{dec}), carrot (CA_{dec}) and celery-derived (CE_{dec}) scaffolds; scale bar: 100 μ m.

Supplementary Data 2: SEM micrographs of osteogenic-differentiated (CA_{osteo}) and nondifferentiated (CA_{preosteo}) MC3T3-E1 cells cultured for t = 7 and 14 days on carrot-derived scaffolds. After 14 days of culture, a uniform colonization was observed on both differentiation-induced and non-induced scaffolds. Scale bar left micrographs: 20 μ m, scale bar right micrographs: 4 μ m (t = 7 d) and 2 μ m (t = 14 d).

Supplementary Data 3: Representative tensile mechanical stress/strain curves at failure of decellularized (CE_{dec}) and control (CE_{ctr}) celery samples.