Archives of Toxicology

Supplementary Information

A nongenomic mechanism for "metalloestrogenic" effects of cadmium in human uterine leiomyoma cells through G protein-coupled estrogen receptor

Jingli Liu¹, Linda Yu¹, Lysandra Castro¹, Yitang Yan¹, Maria I. Sifre², Carl D. Bortner², and Darlene Dixon^{1*}

¹Molecular Pathogenesis Group, National Toxicology Program (NTP) Laboratory, Division of the NTP, National Institute of Environmental Health Sciences, NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA

²Signal Transduction Laboratory, DIR, NIEHS, NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA

Address correspondence to Dr. D. Dixon, National Institute of Environmental Health Sciences, National Toxicology Program, P.O. Box 12233, MD B3-06, Research Triangle Park, NC 27709 USA. Telephone: (919) 541-3814. E-mail: dixon@niehs.nih.gov

Corresponding Author:

Dr. Darlene Dixon email: dixon@niehs.nih.gov Phone: 984-287-3848 eFax: 301-480-4234

Content:

Part 1: Methods

The text includes details of immunohistochemistry and real time-PCR analysis for GPER.

Part 2: 1 Table

Table S1. List of antibodies used for western blotting.

Part 3: 6 Figures

Figure S1. Expression of GPER, ERα36, and phospho-EGFR (P-EGFR) in patient-matched myometrial (M) and uterine leiomyoma (L) tissues.

Figure S2. Percent of ht-UtLM cells positive for GPER by immunofluorescence.

Figure S3. Effects of Cd on cell proliferation in ht-UtLM cells.

Figure S4. Percent of ht-UtLM cells positive for phospho-MAPK by immunofluorescence.

Figure S5. Activation of different tyrosine (Tyr) residues of EGFR in Cd-treated ht-UtLM cells for 10 min. Figure

S6. Mechanism of EGFR transactivation by GPER.

Methods

Immunohistochemistry

Human uterine leiomyoma and myometrial tissue samples were embedded in paraffin and stained for GPER by immunohistochemistry. Sections were deparaffinized and rehydrated. Antigen retrieval was performed with proteinase K retrieval (Agilent Technologies, Santa Clara, CA) at room temperature for 2 minutes. Endogenous peroxidase was blocked with IHC/ISH peroxidase block (Enzo Life Sciences, Farmingdale, NY) for 5 minutes. The sections were incubated with Antibody Blocker/Diluent (Enzo Life Sciences, Farmingdale, NY) for 10 minutes, followed by incubation with GPER (Catalog no. ab39742, abcam, Cambridge, MA) polyclonal IgG primary antibody and an equivalent dilution of rabbit IgG, polyclonal – isotype control (negative control; EMD Millipore, Billerica, MA) for 60 minutes at 1:100 dilution. Sections were then incubated with Polyview plus HRP (Enzo Life Sciences, Farmingdale, NY) for 30 minutes. Antigen-antibody complexes were visualized using HDDAB (Enzo Life Sciences, Farmingdale, NY) for 5 minutes and counterstained with ENZO hematoxylin for 30 seconds, dehydrated, cleared, and coverslipped.

Real Time-PCR analysis

Ht-UtLM cells treated with Cd (0.1 µM and 10 µM) were collected at 24 h, 48 h and 72 h for extraction of total RNA using a TRIzolTM Reagent (catalog no. 15596026, Thermo Fisher Scientific). After DNase treatment and RNA purification, one microgram of total RNA was used to prepare cDNA and primed with GPER and GAPDH (housekeeping gene used as a control) and reverse transcribed with High-Capacity cDNA Reverse Transcription Kit (catalog no. 4368814, Thermo Fisher Scientific). The primer sequence for GPER is: forward primer 5'-TGCACCTTCATGTCGCTCTT-3' and reverse primer 5'-GCGGTCGAAGCTCATCCA-3'. The primer sequence for GAPDH is: forward primer 5'-AATCCCATCACCATCTTCCA-3' 5'and reverse primer TGGACTCCACGACGTACTCA-3'. Real time-PCR was performed with Applied Biosystems Power SYBR Green PCR Mix on an AB cycler (Quantstudio 7 Flex, Thermo Fisher Scientific). The data analysis was based on the $\Delta\Delta$ Ct method with normalization to GAPDH.

Table	S 1	I ist	of	antiho	dies	used	for	western	hlatting	
1 able	51.	LISU	01	anniboo	ules	useu	101	western	bioung.	

Name of antibody	Dilution	Catalog No.	Company
phospho-EGFR (Y845)	1:400	AF3394	R&D
EGFR	1:1000	2232	Cell signaling technology
phospho-p44/42 MAPK	1:1000	9101	Cell signaling technology
p44/42 MAPK	1:1000	9102	Cell signaling technology
phospho-Src	1:1000	2101	Cell signaling technology
Src	1:1000	2123	Cell signaling technology
MMP2	1:1000	4022	Cell signaling technology
MMP9	1:1000	3852	Cell signaling technology
TIMP2	1:1000	5738	Cell signaling technology
TIMP1	1:1000	8946	Cell signaling technology
HB-EGF	1:4000	185555	Abcam
HPRT	1:1000	20975	Santa cruz

Fig. S1 Expression of GPER, ER α 36, and phospho-EGFR (P-EGFR) in patient-matched myometrial (M) and uterine leiomyoma (L) tissues. (a) GPER (b) ER α 36 and (c) phospho-EGFR by western blotting. n = 15 pairs of human tissues.

Fig. S2 Percent of ht-UtLM cells positive for GPER by immunofluorescence.

Fig. S3 Effects of Cd on cell proliferation in ht-UtLM cells. *P < 0.05 compared to control.

Fig. S4 Percent of ht-UtLM cells positive for phospho-MAPK by immunofluorescence. *P <0.05 compared to control.

Fig. S5 Activation of different tyrosine (Tyr) residues of EGFR in Cd-treated ht-UtLM cells for 10 min. Representative immunoblots by western blotting.

Fig. S6 Mechanisms of EGFR transactivation by GPER.