
5. Supplementary Appendix511

Positivity and boundedness of the solution for the Model (2.2)512

This subsection is provided to prove the positivity and boundedness of solutions of513

the system (2.2) with initial conditions (S(0), L(0), E(0), A(0), I(0), C(0), R(0))T ∈ R7
+0.514

We first state the following lemma.515

Lemma 5.1. Suppose Ω ⊂ R×Cn is open, fi ∈ C(Ω,R), i = 1, 2, 3, ..., n. If fi|xi(t)=0,Xt∈Cn
+0
≥

0, Xt = (x1t, x2t, ....., x1n)T , i = 1, 2, 3, ...., n, then Cn
+0{φ = (φ1, ....., φn) : φ ∈ C([−τ, 0],Rn

+0)}
is the invariant domain of the following equations

dxi(t)

dt
= fi(t,Xt), t ≥ σ, i = 1, 2, 3, ..., n.

where Rn
+0 = {(x1, ....xn) : xi ≥ 0, i = 1, ...., n} [39].516

Proposition 5.1. The system (2.2) is invariant in R7
+0.517

Proof. By re-writing the system (2.2) we have:518

dX

dt
= B(X(t)), X(0) = X0 ≥ 0 (S-1)

B(X(t)) = (B1(X), B1(X), ..., B7(X))T

We note that

dS

dt
|S=0 = ΠH + ωL > 0,

dL

dt
|L=0 = lS ≥ 0,

dE

dt
|E=0 =

β1S(I + ρA)

N − C ≥ 0,

dA

dt
|A=0 = (1− κ)σE ≥ 0,

dI

dt
|I=0 = κσE ≥ 0,

dC

dt
|C=0 = τI ≥ 0,

dR

dt
|R=0 = γ1A+ γ2I + γ3C ≥ 0.

Then it follows from the Lemma 5.1 that R7
+0 is an invariant set for the COVID-19519

system (2.2) with lockdown.520

Corollary 5.1. The system (2.1) is invariant in R6
+0.521

Proof. Proceeding as proposition 5.1, we can easily show that R6
+0 is an invariant set for522

the COVID-19 system (2.1) without lockdown.523

Lemma 5.2. The system (2.2) is bounded in the region524

Ω = {(S, L,E,A, I, C,R) ∈ R7
+0|S + L+ E + A+ I + C +R ≤ ΠH

µ
}525

Proof. We have from the system (2.2):

dN

dt
= ΠH − µN − δC ≤ ΠH − µN

=⇒ lim
t→∞

supN(t) ≤ ΠH

µ

Hence the system (2.2) is bounded.526
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Corollary 5.2. The system (2.1) is bounded in the region527

Ω∗ = {(S,E,A, I, C,R) ∈ R6
+0|S + E + A+ I + C +R ≤ ΠH

µ
}528

Proof. proceeding same as lemma 5.2, we can easily show that the system (2.1) is bounded529

in Ω∗.530

Local stability of disease-free equilibrium (DFE)531

The DFE of the model (2.2) is provided as follows:

ε0 = (S0, L0, E0, A0, I0, C0, R0)

=
( ΠH(µ+ ω)

µ (µ+ ω + l)
,

ΠH l

µ (µ+ ω + l)
, 0, 0, 0, 0, 0

)

The local stability of ε0 can be established for the COVID-19 system (2.2) by using the

next generation operator method. Using the notation in [32], the matrices F for the new

infection and V for the transition terms are given, respectively, by

F =




0 ρβ1 β1 0

0 0 0 0

0 0 0 0

0 0 0 0


 ,

V =




µ+ σ 0 0 0

−(1− κ)σ γ1 + µ 0 0

−κσ 0 γ2 + τ + µ 0

0 0 −τ δ + γ3 + µ


 .

It follows that the basic reproduction number [40], denoted by R0 = Φ(FV −1), where Φ

is the spectral radius, is given by

R0 =
β1κσ

(µ+ σ)(γ2 + τ + µ)
+

ρβ1(1− κ)σ

(µ+ σ)(γ1 + µ)

Using Theorem 2 in [32], the following result is established.532

Lemma 5.3. The DFE, ε0, of the model (2.2) is locally-asymptotically stable (LAS) if533

R0 < 1, and unstable if R0 > 1.534

The threshold quantity, R0 is the basic reproduction number of the disease [40; 41; 42].535

This represent the average number of secondary cases generated by a infected person in536

a fully susceptible population. The epidemiological significance of 5.3 is that when R0537

is less than unity, a low influx of infected individuals into the population will not cause538

major outbreaks, and the disease would die out in time.539
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Global stability of DFE540

Theorem 5.1. The DFE of the model (2.2) is globally asymptotically stable in Ω when-541

ever R0 ≤ 1.542

Proof. Consider the following Lyapunov function

L =
(σ(κk2 + ρ(1− κ)k3)

k1k2

)
E +

(ρk3

k2

)
A+ I

where k1 = µ+ σ, k2 = γ1 + µ and k3 = γ2 + τ + µ.
We take the Lyapunov derivative with respect to t,

L̇ =
(σ(κk2 + ρ(1− κ)k3)

k1k2

)
Ė +

(ρk3

k2

)
Ȧ+ İ

=
σ(κk2 + ρ(1− κ)k3)

k1k2

[β1S(I + ρA)

N − L− C − k1E
]

+
ρk3

k2

[(1− κ)σE − k2A] + (κσE − k3I)

≤ β1σ(κk2 + ρ(1− κ)k3)

k1k2

(I + ρA)− σ(κk2 + ρ(1− κ)k3)

k2

E +
ρ(1− κ)k3σ

k2

E

− ρk3A+ κσE − k3I (Since S ≤ N − L− C in Ω)

=
β1σ(κk2 + ρ(1− κ)k3)

k1k2

(I + ρA)− ρk3A− k3I

=
β1σ(κk2 + ρ(1− κ)k3)

k1k2k3

k3(I + ρA)− ρk3A− k3I

≤ k3(R0 − 1)(I + ρA) ≤ 0, whenever R0 ≤ 1.

Since all the variables and parameters of the model (2.2) are non-negative, it follows that543

L̇ ≤ 0 for R0 ≤ 1 with L̇ = 0 at diseases free equilibrium. Hence, L is a Lyapunov544

function on Ω. Therefore, followed by LaSalles Invariance Principle [43], that545

(E(t), A(t), I(t))→ (0, 0, 0) as t→∞ (S-2)

Since lim
t→∞

supI(t) = 0 (from S-2), it follows that, for sufficiently small ε > 0, there exist

constants B1 > 0 such that lim
t→∞

supI(t) ≤ ε for all t > B1.

Hence, it follows from the sixth equation of the model (2.2) that, for t > B1,

dC

dt
≤ τε− k4C

Therefore using comparison theorem [44]

C∞ = lim
t→∞

supC(t) ≤ τε

k4
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So as ε→ 0, C∞ = lim
t→∞

supC(t) ≤ 0

Similarly by using lim
t→∞

infI(t) = 0, it can be shown that

C∞ = lim
t→∞

infC(t) ≥ 0

Thus, it follows from above two relations

C∞ ≥ 0 ≥ C∞

Hence lim
t→∞

C(t) = 0

Similarly, it can be shown that

lim
t→∞

R(t) = 0, lim
t→∞

S(t) =
ΠH (µ+ ω)

µ (µ+ ω + l)
, and lim

t→∞
L(t) =

ΠH l

µ (µ+ ω + l)
.

Therefore by combining all above equations, it follows that each solution of the model546

equations (2.2), with initial conditions ∈ Ω , approaches ε0 as t→∞ for R0 ≤ 1.547

Existence and stability of endemic equilibria548

In this section, the existence of the endemic equilibrium of the model (2.2) is estab-

lished. Let us denote

M1 =
µ+ ω

µ+ σ
,M2 =

(1− κ)σ (µ+ ω)

(µ+ γ1) (µ+ σ)
,M3 =

κσ (µ+ ω)

(µ+ γ2 + τ) (µ+ σ)
,

M4 =
κτσ (µ+ ω)

(µ+ γ2 + τ) (µ+ γ3 + δ) (µ+ σ)
.

Let ε∗ = (S∗, E∗, A∗, I∗, C∗, R∗) represents any arbitrary endemic equilibrium point

(EEP) of the model (2.2). Further, define

λ∗ =
β1(I∗ + ρA∗)

N∗ − L∗ − C∗ (S-3)

It follows, by solving the equations in (2.2) at steady-state, that

S∗ =
(µ+ ω)L∗

l
, L∗ =

ΠH l

λ∗ (µ+ ω) + µ (µ+ ω + l)
, E∗ =

M1L
∗λ∗

l
, (S-4)

A∗ =
M2L

∗λ∗

l
, I∗ =

M3L
∗λ∗

l
, C∗ =

M4L
∗λ∗

l

R∗ =
(γ1M2 + γ2M3 + γ3M4)L∗λ∗

lµ
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Substituting the expression in (S-4) into (S-3) shows that the non-zero equilibrium of the

model (2.1) satisfy the following linear equation, in terms of λ∗:

Aλ∗ = B (S-5)

where

A = µM1 +M2 (µ+ γ1) +M3 (µ+ γ2) + γ3M4

B = µ (µ+ ω) (R0 − 1)

Since, M1 > 0, M2 > 0, M3 > 0, and M4 > 0 =⇒ A > 0, it is clear that the549

model (2.2) has an unique endemic equilibrium point (EEP) whenever R0 > 1 and no550

positive endemic equilibrium point whenever R0 < 1. This rules out the possibility of551

the existence of equilibrium other than DFE whenever R0 < 1. Therefore, we have the552

following result:553

Theorem 5.2. The model (2.2) has a unique endemic (positive) equilibrium, given by554

ε∗, whenever R0 > 1 and has no endemic equilibrium for R0 ≤ 1.555

Now we will prove the local stability of endemic equilibrium.556

Theorem 5.3. The endemic equilibrium ε∗ of the COVID-19 system (2.2) with lockdown557

is locally asymptotically stable if R0 > 1.558

Proof. The Jacobian matrix of the system (2.2) Jε0 at DFE is given by

Jε0 =




− (µ+ l) ω 0 −ρβ1 −β1 0 0
l − (µ+ ω) 0 0 0 0 0
0 0 −(µ+ σ) ρβ1 β1 0 0
0 0 (1− κ)σ −(µ+ γ1) 0 0 0
0 0 κσ 0 −(µ+ γ2 + τ) 0 0
0 0 0 0 τ −(µ+ γ3 + δ) 0
0 0 0 γ1 γ2 γ3 −µ




,

Here, by taking β1 as a bifurcation parameter, we use the central manifold theory559

method to determine the local stability of the endemic equilibrium [45]. Taking β1 as the560

bifurcation parameter and gives critical value of β1 at R0 = 1 is given as561

β∗1 =
(µ+ σ)(γ1 + µ)(γ2 + τ + µ)

[κσ(γ1 + µ) + (1− κ)ρσ(γ2 + τ + µ)]
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The Jacobian of (2.2) at β = β∗1 , denoted by Jε0 |β=β∗
1

has a right eigenvector (corre-
sponding to the zero eigenvalue) given by w = (w1, w2, w3, w4, w5, w6, w7)T , where

w1 = −(µ+ σ) (µ+ ω)

µ (µ+ ω + l)
, w2 = − (µ+ σ) l

µ (µ+ ω + l)
, w3 = 1, w4 =

(1− κ)σ

µ+ γ1

,

w5 =
κσ

µ+ γ2 + τ
, w6 =

κστ

(µ+ γ2 + τ) (µ+ γ3 + δ)

w7 =
γ1(1− κ)σ

µ(γ1 + µ)
+

γ2κσ

µ(γ2 + τ + µ)
+

γ3τκσ

µ(γ2 + τ + µ)(δ + γ3 + µ)

Similarly, from Jε0 |β=β∗
1
, we obtain a left eigenvector v = (v1, v2, v3, v4, v5, v6, v7) (corre-

sponding to the zero eigenvalue), where

v1 = 0, v2 = 0, v3 = 1, v4 =
ρβ∗1
γ1 + µ

, v5 =
β∗1

γ2 + τ + µ
, v6 = 0, v7 = 0.

Selecting the notations S = x1, L = x2, E = x3, A = x4, I = x5, C = x6, R = x7 and
dxi
dt

= fi. Now we calculate the following second-order partial derivatives of fi at the
disease-free equilibrium ε0 and obtain

∂2f3

∂x4∂x3

= −ρβ
∗
1µ (µ+ ω + l)

ΠH (µ+ ω)
=

∂2f2

∂x3∂x4

,

∂2f3

∂x5∂x3

= −β
∗
1µ (µ+ ω + l)

ΠH (µ+ ω)
=

∂2f3

∂x3∂x5

,

∂2f3

∂x2
4

= −2ρβ∗1µ (µ+ ω + l)

ΠH (µ+ ω)
,

∂2f3

∂x2
5

= −2β∗1µ (µ+ ω + l)

ΠH (µ+ ω)
,

∂2f3

∂x4∂x5

= −(1 + ρ) β∗1µ (µ+ ω + l)

ΠH (µ+ ω)
=

∂2f3

∂x5∂x4

,

∂2f3

∂x7∂x4

= −ρβ
∗
1µ (µ+ ω + l)

ΠH (µ+ ω)
=

∂2f3

∂x4∂x7

,

∂2f3

∂x7∂x5

= −β
∗
1µ (µ+ ω + l)

ΠH (µ+ ω)
=

∂2f3

∂x5∂x7

.

Now we calculate the coefficients a and b defined in Theorem 4.1 [45] of Castillo-Chavez
and Song as follow

a =
6∑

k,i,j=1

vkwiwj
∂2fk(0, 0)

∂xi∂xj

and

b =
6∑

k,i=1

vkwi
∂2fk(0, 0)

∂xi∂β
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Replacing the values of all the second-order derivatives measured at DFE and β1 = β∗1 ,
we get

a = −2 (w3 + w4 + w5 + w7)

[
ρβ∗1µ (µ+ ω + l)

ΠH (µ+ ω)
w4 +

β∗1µ (µ+ ω + l)

ΠH (µ+ ω)
w5

]
< 0

and

b = ρw4 + w5

=
(1− κ)σρ

(µ+ γ1)
+

κσ

(µ+ γ2 + τ)
> 0.

Since a < 0 and b > 0 at β = β∗1 , therefore using the Remark 1 of the Theorem 4.1 stated562

in [45], a transcritical bifurcation occurs at R0 = 1 and the unique endemic equilibrium of563

the COVID-19 system (2.2) with lockdown is locally asymptotically stable for R0 > 1.564
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Figures565

Figure S1: Ensemble model forecast for the daily notified COVID-19 cases in Maharashtra during May 17, 2020
till May 31, 2020, under five different social distancing measure. Various legends are Current Rate: daily notified
case projection using the estimated value of the lockdown rate (see Table 4 main text), 15% Reduction: daily
notified case projection using 15% reduction in the estimated value of the lockdown rate (see Table 4 main text),
20% Reduction: daily notified case projection using 20% reduction in the estimated value of the lockdown
rate (see Table 4 main text), 30% Reduction: daily notified case projection using 30% reduction in the estimated
value of the lockdown rate (see Table 4 main text), and No lockdown: daily notified case projection based on no
lockdown scenario, respectively.
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Figure S2: Ensemble model forecast for the daily notified COVID-19 cases in Delhi during May 17, 2020 till May
31, 2020, under five different social distancing measure. Various legends are same as Fig S1.

Figure S3: Ensemble model forecast for the daily notified COVID-19 cases in Tamil Nadu during May 17, 2020 till
May 31, 2020, under five different social distancing measure. Various legends are same as Fig S1.
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Figure S4: Ensemble model forecast for the daily notified COVID-19 cases in Gujarat during May 17, 2020 till
May 31, 2020, under five different social distancing measure. Various legends are same as Fig S1.

Figure S5: Ensemble model forecast for the daily notified COVID-19 cases in Punjab during May 17, 2020 till May
31, 2020, under five different social distancing measure. Various legends are same as Fig S1.
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Figure S6: Posterior density of the weights for the mechanistic mathematical model (2.1 & 2.2) and the best
statistical forecast model (HYBRID), respectively for Maharashtra.

Figure S7: Posterior density of the weights for the mechanistic mathematical model (2.1 & 2.2) and the best
statistical forecast model (ARIMA), respectively for Delhi
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Figure S8: Posterior density of the weights for the mechanistic mathematical model (2.1 & 2.2) and the best
statistical forecast model (HYBRID), respectively for Tamil Nadu.

Figure S9: Posterior density of the weights for the mechanistic mathematical model (2.1 & 2.2) and the best
statistical forecast model (ARIMA), respectively for Gujarat.

40



Figure S10: Posterior density of the weights for the mechanistic mathematical model (2.1 & 2.2) and the best
statistical forecast model (TBATS), respectively for Punjab.

Figure S11: Posterior density of the weights for the mechanistic mathematical model (2.1 & 2.2) and the best
statistical forecast model (HYBRID), respectively for India.
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Tables566

Table S1: Estimated initial state variables of the mathematical model (2.1). All data are given in
the format Estimate (95% CI).

Location S(0) E(0) A(0) I(0)

Maharashtra
123243118

(114977907−124511349)

27.27

(0.51−35.06)

9531

(9483−9989)

24.76

(14.17−30.26)

Delhi
16070717

(10346593−19737264)

14.74

(0.05−14.97)

437

(92.38−4017)

282

(7.82−325)

Tamil Nadu
75367306

(70335585−79738740)

4.80

(0.05−4.73)

0.40

(0.03−2.52)

7.61

(1.96−10.88)

Gujarat
66848292

(60218205−69744037)

7630

(2622−9775)

26.10

(1.26−28.70)

14.01

(0.02−20.54)

Punjab
26433551

(26433543−26433556)

7.83

(0.20−13.81)

19.26

(0.29−29.54)

8

(1.08−15.96)

India
1226841787

(1219848614−1297276832)

221104

(21136−279521)

462997

(27541−642484)

36043

(3601−84059)
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Table S2: Goodness of fit (RMSE) for the three statistical forecast model (ARIMA, TBATS and
HYBRID), respectively. RMSE for different locations are calculated only for the test period data
(May 4, 2020 till May 8, 2020). RMSE values of the best performed statistical forecast model in
different locations are shown in red.

Location ARIMA TBATS HYBRID

Maharashtra 179.84368 110.57237 90.04999

Delhi 92.17782 96.11452 94.14085

Tamil Nadu 182.5897 244.8254 119.9740

Gujarat 28.16381 37.36576 30.92572

Punjab 292.5078 188.9780 238.9491

India 457.7622 438.1160 368.0725

Table S3: Weight estimates for the mechanistic mathematical model (2.1 & 2.2) and the best
statistical forecast model, respectively. Respective subscript are MH: Maharashtra, DL: Delhi,
TN: Tamil Nadu, GJ: Gujarat, PJ: Punjab, and IND: India. w1 and w2 denote the weights of the
COVID-19 mathematical model (2.1 & 2.2) and the best statistical forecast model, respectively
for a region. All data are provided in the format Estimate (95% CI).

Weights MH DL TN GJ PJ IND

w1
0.48

(0.2243−0.8262)

0.5186

(0.1112−0.8004)

0.6158

(0.1801−0.5848)

0.2009

(0.1554−0.5737)

0.8331

(0.6291−0.8942)

0.3131

(0.1695−0.6149)

w2
0.52

(0.1738−0.7757)

0.4814

(0.1996−0.8888)

0.3842

(0.4152−0.8199)

0.7991

(0.4263−0.8446)

0.1669

(0.1058−0.3709)

0.6869

(0.3851−0.8305)
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