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Supplemental Information 

Supplemental Table-I: pH Susceptibility of Common Pathogens. 

Microorganism 
Inhibitory 

pH 
Optimal Growth pH 

(range, average) 
Reference 

Acetinobacter 
baumannii 

5 7 (1) 

Bacillus cereus 4.3 6.75 (2) 

Bartonella 
henselae 

<6.6 6.8-7.2 (7.0) (3) 

Bacteroides 
fragilis 

5 7-7.5 (7.25) (4) 

Bordetella 
pertusis 

6 7-7.5 (7.25) (5) 

Brucella spp. 3.5 6.6-7.4 (7.0) (6) 

E. coli ~4 6-8 (7.0) (7) 

Campylobacter 
jujeni 

4 6.5-7.5 (7.0) (8) 

Enterococcus 
spp. 

4.5 7.5 (9) 

Group A 
Streptococcus 

5.5 7.5 (10, 11) 

Group B 
Streptococcus 

4.3 7 (12) 

Histoplasma 
capsulatum 

5 6-9 (7) (13) 

Legionella 
pneumophila 

5 5.5-9.2 (7.35) (14) 

Listeria 
monocytogenes 

3.3 5.6 (15, 16) 

Mycobacterium 
tuberculosis 

6.0 7.0 (17) 

Mycobacterium 
avium 

4.6 6 (18, 19) 

Neisseria 
gonorrhea 

5.8 6.7 (20, 21) 

Neisseria 
menigitidis 

6 7.2-9.0 (8.1) (22) 
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Pseudomonas 
aeruginosa 

5.4 6-7.5 (6.75) (23) 

Salmonella 
typhimurium 

5 7 (24) 

Staphylococcus 
aureus 

4.3 6.5 (25) 

Streptococcus 
pneumoniae 

7.0 7.9 (26) 

Serratia 
marcesens 

3.0 9.0 (27, 28) 

Shigella flexneri 5.5 7.5 (29) 

Vibrio cholerae 5.0 8.5 (30, 31) 

Yersinia 
enterocolitica 

5.0  (32) 

Yersinia pestis 5 7.6 (33, 34) 

Supplemental Table-I. pH Susceptibility of Common Pathogens. pH tolerances of pathogens were found 

through literature search. In the case of a range of optimal pH, the average was used for simulation data. 

Species names are italicized. 
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Supplemental Figure 1. Analysis of 80 pairs of phagolysosomes within single cells. A. Measured 

phagolysosomal pH of multiple beads located in the same macrophage but non-proximal 

phagolysosomes. Lines indicate particles within the same macrophage. Phagolysosomes were measured 

in no particular order. B. Differences of each phagolysosomal pH pair approximate a normal distribution 

centered around 0 with non-zero values despite being generated within the same macrophage at a 

synchronized starting time.  
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Supplemental Figure 2. Ordinal pattern analysis for expanded samples. A. Ordinal pattern frequencies for 

phagolysosomal acidification intervals in BMDMs infected with various particles at various hours post 

infection (gray box values). B. Ordinal pattern frequencies for time elapsed before initiation of budding 

for yeast strains ingested by BMDMs.  
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Supplemental Figure 3. Phagolysosomal pH distributions for expanded samples. Two strains of C. gattii 

(179 and 265), a urease deficient H99 mutant (Δure1), and a capsule deficient H99 mutant (cap59) were 

analyzed at various hours post infection (gray box value).  
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Supplemental Figure 4. Q-Q plots of macrophages 1-4 HPI after ingesting various particles. Note that bead 

containing phagolysosomes closely approximate a normal distribution, while C. neoformans containing 

phagolysosomes have heavy tails, regardless if the particle is live or dead.  
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Supplemental Figure 5. Ordinal pattern analysis for EEA1 (solid) and VATPase (dashed) 

immunofluorescent staining for bead containing macrophage phagolysosomes at various hours post 

ingestion (gray box values). No forbidden ordinal patterns were detected for any samples, suggesting 

phagolysosomal maturation marker acquisition is a stochastic process. 
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Supplemental Figure 6. Mean fluorescence intensity values for EEA1 and VATPase immunofluorescent 

staining. The acquisition of these phagolysosomal maturation markers does not resemble that of bead 

containing phagolysosomal pH, as no samples here are normally distributed. P values were determined 

via Shapiro-Wilk normality test. 
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Supplemental Figure 7. Mean fluorescent intensity of macrophage ingested beads stained for EEA1 and 

VATPase, sorted according to total ingested particles per cell. Linear regressions were calculated for each 

sample set but clearly there is no significant correlation between total ingested particles and number of 

EEA1 or VATPase molecules as measured by fluorescent intensity. 
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Supplemental Figure 8. Normality analysis for expanded samples. Shapiro-Wilk normality values (lines) 

alongside total phagolysosome sample sizes (bars) for two strains of C. gattii (179 and 265), a urease 

deficient H99 mutant (Δure1), a capsule deficient H99 mutant (cap59), and trained BMDMs on reinfection. 
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Supplemental Figure 9. Phagolysosomal pH distributions for bead containing phagolysosomes of 

differently polarized BMDMs at each measured time post infection (gray box values). Black bars represent 

P < 0.0001 via Kruskal-Wallis test with Wilcox rank pairing test. 
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Supplemental Figure 10. Bimodal models fitted to the observed data for A. M0 and B. M2 skewed 

macrophages. Models are attempted fits of two mixed Gaussian distributions. Histogram bars visualize 

the observed data while solid and dashed lines depict the relative contributions of the two hypothetical 

Gaussian distributions. 
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Supplemental Figure 11. Phagolysosomal pH distributions for human macrophages infected with H99 

separated by individual donor. Human macrophages were analyzed after ingesting either H99 or inert 

beads at various hours post infection (gray box value). 
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Supplemental Figure 12. Estimated mean log fitness of macrophages containing live or killed M. avium. 

Phagolysosomal pH data was gathered from literature using either video microscopy (triangles) or 

confocal microscopy (circles). 
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