
Quality control of genetic data in Lothian Birth Cohort 1936  

SNPs were imputed to the 1000 G reference panel (phase 1, version 3). Individuals were 

excluded on the basis of sex discrepancies, relatedness, SNP call rate of less than 0.95 and 

evidence of non-Caucasian descent. SNPs with a call rate of greater than 0.98, minor allele 

frequency in excess of 0.01 and Hardy-Weinberg equilibrium test with P ≥ 0.001 were 

included in analyses. 

Genome-wide association studies 

Ordinary least squares regression model 

The computational strategy for GWAS/EWAS analyses are shown in Fig. 1. Genome-wide 

association analyses were conducted on 8675776 (typed and imputed) autosomal variants 

against protein phenotypes which were pre-corrected for age, sex, four genetic principal 

components of ancestry and Olink® array plate. Ordinary least squares regression was used 

to assess the effect of each genetic variant on transformed protein levels using mach2qtl (1, 

2).  

 

To identify independent genetic associations with Olink® inflammatory levels, we performed 

approximate genome-wide stepwise conditional analysis through GCTA-COJO (3). We used 

the ‘cojo-slct’ option and individual level genotype data. Default settings of the software were 

applied. 

Quality control of methylation data in Lothian Birth Cohort 1936  

Raw intensity data were background-corrected and normalised using internal controls. 

Following background correction, manual inspection permitted removal of low quality 



samples presenting issues relating to bisulphite conversion, staining signal, inadequate 

hybridisation or nucleotide extension. Quality control analyses were performed to remove 

probes with low detection rate <95% at P < 0.01. Samples with a low call rate (samples with 

<450000 probes detected at p-values of less than 0.01) were also eliminated. Furthermore, 

samples were removed if they had a poor match between genotype and SNP control probes, 

or incorrect DNA methylation-predicted sex. 

Epigenome-wide association studies 

Ordinary least squares regression model 

In the ordinary least squares model strategy (limma; linear models for microarray data), each 

CpG site (n = 459309) was regressed on transformed protein levels with adjustments for age, 

sex, estimated white blood cell proportions (CD4+ T cells, CD8+ T cells, B cells, Natural Killer 

Cells and granulocytes) and technical covariates (plate, position, array, hybridisation, date) 

(4). Proportions of white blood cells were estimated from methylation data using the 

Houseman method (5).  

Mixed linear model  

In contrast to limma, CpG site (n = 459309) was the independent variable whereas Olink® 

protein levels were input as dependent variables in all mixed models (performed using OmicS-

data-based Complex trait Analysis: OSCA) (6). The same covariates were adjusted for as in the 

limma strategy. The MOMENT method was used to test for associations between traits of 

interest and methylation at individual probes. MOMENT is a mixed linear model-based 

method that can account for unobserved confounders and the correlation between distal 

probes which may be introduced by such confounders. The same Bonferroni-corrected 



threshold as the linear model was applied: 5.14 x 10-10 (= genome-wide significance: 3.6 x 10-

8/70 phenotypes).  

Sherlock  

A Bayesian algorithm termed Sherlock (7) was used to detect gene-protein associations by 

incorporating information from publicly available eQTL data and GWAS summary statistics. 

This was carried out to infer genes whose differential expression may contribute to alterations 

in circulating levels of Olink® inflammatory proteins. Sherlock identifies all cis and trans eQTLs 

or expression-associated SNPs (eSNPs) for a given gene in a selected data set. The algorithm 

evaluates the association of each eSNP with the trait of interest (i.e. protein levels) using 

supplied GWAS data. A score is assigned to each gene based on aligning P-values for the 

association of the SNP with gene expression and the studied trait. There are three possible 

scenarios which affect this gene-based score: (i) if the eSNP for the gene is also associated 

with the trait, a positive score is assigned, (ii) if the eSNP is not associated with the trait, a 

negative score is assigned and (iii) if the SNP is associated with the trait only (non-eSNP), the 

score is not affected. The total score of a gene increases in tandem with an increase in the 

number of SNPs with combined evidence (SNPs that are associated with trait and expression). 

For each SNP in the alignment, the logarithm of Bayes factor is computed and the sum of 

constituent SNPs in the gene constitutes the final score for the gene. SNPs that have moderate 

statistical significance in GWAS and eQTL data sets, that are otherwise missed by traditional 

GWAS thresholds, are considered. SNPs with stronger associations with the trait contribute 

more to the final gene-based score than moderately-associated variants. Default settings 

were applied. As our protein data was collected from whole blood, analyses were restricted 



to the eQTL GTEx (V7) Whole Blood data set (n = 369) (8). Correction for multiple testing was 

carried out using the Benjamini-Hochberg procedure at a threshold of P < 1.0 x 10-5 (9).  

Mendelian Randomisation  

(i) Pruned protein QTL variants were used as instrumental variables (IV) to determine 

the relationship between circulating inflammatory protein biomarkers and their 

respective phenotypic associations, as identified through GWAS Catalog. Four 

proteins were shown to have an association with five human traits. Thus, a 

Bonferroni-corrected significance threshold of 0.01 (0.05/5 tests) was applied. 

(ii) For 11/13 proteins, only one SNP remained after linkage disequilibrium (LD) 

pruning. For 2 proteins (CCL25 and CST5), two independent SNPs were present 

after pruning. Pruned SNPs were used as IV to test for causal associations between 

each of the 13 inflammatory proteins and risk of late-onset Alzheimer’s disease 

(10). A Bonferroni-corrected significance threshold of 3.85 x 10-3 (0.05/13 tests) 

was applied. For one protein (IL18R1) which showed a nominally significant 

association with AD risk, a bidirectional analysis was performed to assess for a 

putatively causal association in which AD risk affected circulating IL18R1 levels. For 

this test, 22 independent SNPs remained after LD pruning.  

(iii) Expression QTLs obtained from eQTLGen consortium were used as IV to test 

whether changes in gene expression were causally associated with protein levels 

(11). 

(iv) One protein (IL18R1) harboured both genome- and epigenome-wide significant 

associations in this study. Therefore, we wished to determine whether 

methylation affected protein levels and/or whether protein levels affected 



methylation. We used Phenoscanner to determine whether the pQTL identified 

for IL18R1 levels (rs917997) has been reported as a methylation QTL for the 

corresponding cis genome-wide significant CpG site identified for IL18R1 levels in 

our study (cg03938978) (12). The methylation QTL was used as an instrument to 

test whether altered DNA methylation was causally associated with inflammatory 

protein levels. Conversely, the IL18R1 pQTL was used as an instrument to assess 

whether altered IL18R1 levels were causally linked to differential methylation.  

Conditional and joint analysis from ordinary least squares GWAS on protein levels 

In an ordinary least squares (OLS) regression model, 1531 SNPs were associated with the 

levels of 19/70 proteins at a Bonferroni-corrected threshold (P < 7.14 x 10-10; Additional file 

2: Table S3). Manhattan and Q-Q plots for these 19 proteins are presented in Appendices 1 

and 2, respectively. Estimates for inflation factors across each of the 70 genome-wide 

association studies are listed in Additional file 2: Table S4. Conditional and joint analysis 

(GCTA-COJO) was performed to identify which of these hits were independent of one another, 

resulting in the identification of 27 conditionally significant pQTLs associated with the 

circulating levels of 17 proteins (Additional file 2: Table S5). Of note, whereas Bonferroni-

corrected genome-wide significant SNPs were identified for an additional two proteins (CCL23 

and MMP-10), the conditional P value for these pQTLs from GCTA-COJO did not fall below the 

Bonferroni-corrected threshold of P < 7.14 x 10-10. 

Sherlock: identifying genes whose expression associates with inflammatory biomarkers 

The Bayesian algorithm termed Sherlock uses cis and trans eQTLs to assign gene-based scores 

from GWAS data to identify genes whose expression associates with a trait of interest (here, 



protein levels). Putative gene expression-protein associations for all 13 proteins are outlined 

in Additional file 2: Table S11. From this gene-based colocalisation approach, only gene 

expression of ADA, CXCL5 and IL18R1 were associated with levels of their respective protein 

products. Expression of MIF4GD and GRB2 were both associated with CD6 and TNFB levels (r 

between levels: 0.45). Expression of TNRC6A was associated with CD6 and ADA levels (r: 0.55). 

CXCL4L1 expression was associated with CXCL5 and CXCL6 levels (r: 0.44).   

 

The disparity between the employed colocalisation methods, coloc and Sherlock, may reflect 

differences in technical and biological variability. The former method considers cis regions in 

a continuous chromosomal region as defined by the pQTL whereas the latter takes into 

account all cis and trans eQTLs across the genome passing a soft significance threshold. Both 

transcript datasets and our pQTL estimates were generated in different samples which may 

have resulted in different molecular abundances and differences in the overlapping of 

transcript and protein distributions. The small sample sizes used to generate the datasets may 

have limited power to detect further cis gene expression-protein patterns.     

GWAS and EWAS of CCL11 levels – incorporating smoking status as a covariate  

The smoking-associated AHRR probe, cg05575921, was associated with CCL11 levels in the 

OLS regression-, mixed model- and Bayesian penalised regression-based EWAS. Adjustment 

for smoking attenuated this association in the OLS regression model, as detailed in the main 

text. Therefore, we repeated the EWAS of CCL11 levels adjusting for smoking status as an 

additional covariate. We also repeated the GWAS of CCL11 levels, through OLS regression and 

BayesR+, adjusting for smoking status. 



 

Beginning with the genome-wide association studies, one SNP was significantly associated 

with CCL11 levels and survived multiple testing correction in the OLS regression GWAS 

following adjustment for smoking (rs2228467; effect allele: C, beta: 0.60, se: 0.10, P: 5.14 x 

10-10). This SNP was annotated to the ACKR2 gene. The association between rs2228467 and 

CCL11 levels has previously been reported in two studies (13, 14). Beta coefficients were 

correlated 98% between the models with and without smoking status as a covariate. In the 

BayesR+ GWAS, no markers were significantly associated with CCL11 levels. However, the SNP 

with the highest posterior inclusion probability was rs2228467 at 48%. The variance in CCL11 

levels explained by genetic data was 25.5% prior to adjustment for smoking and was 23.6% 

following controlling for smoking levels.  

 

In the OLS regression-based EWAS, t-statistics were correlated 96% between the models with 

and without smoking status as a covariate. After accounting for smoking status, the 

association between the smoking-associated AHRR probe, cg05575921, and CCL11 levels was 

attenuated by 31.03% to non-significance. Twenty-one probes showed a difference in t-

statistic > 3 between the model without smoking as a covariate and the model with smoking 

status included as a covariate. These probes were all annotated to either AHRR, F2RL3, GFI1 or 

RARA. Differential methylation levels in these genes have been strongly linked to smoking 

status (15-18). In the mixed model-based EWAS, the beta coefficients were correlated 97% 

between the model without smoking as a covariate and the model which incorporated 

smoking status. The association between CCL11 levels and the cg05575921 probe was 

attenuated to non-significance upon controlling for smoking status (before adjustment: beta: 



-1.96, P: 4.86 x 10-10, after adjustment: beta: -0.21, P: 0.84; % attenuation: 89.29%). In the 

BayesR+ EWAS, no probes were significantly associated with CCL11 levels. As with the OLS 

regression and mixed model strategies, the association between CCL11 levels and the 

cg05575921 probe was attenuated to non-significance. The variance in CCL11 levels explained 

by methylation data was 26.3% prior to adjustment for smoking and was 19.6% upon 

controlling for smoking status. This reflects a decrease of 6.7%. 

Replication of previous pQTLs and protein associated-CpG sites 

Phenoscanner was used to search for previously reported pQTL associations (12). Default 

settings for the software were used, the “pQTL” catalogue was searched and the r2 value 

between input SNPs and proxy SNPs was set to 0.8. Summary statistics from four major pQTL 

studies were extracted to determine whether the 13 pQTLs identified in this study replicated 

those of previous findings (19-22). Following an additional literature search, we also cross-

referenced findings from Höglund et al., Di Narzo et al., Enroth et al., Sun et al. for look-up 

analysis (13, 23-25). Across studies, all 13 proteins were available for look-up. Eleven (84.6%) 

of our conditionally significant and robustly identified pQTLs replicated previously reported 

genome-wide significant signals. Beta coefficients were correlated 88% between our study 

and those reported in previous studies. Of these eleven pQTLs, five were reported in just one 

other study (Table 1). Three pQTLs (rs2032887 for CCL25, rs6851997 for CXCL6 and 

rs10045431 for IL12B) were reported in two studies. Three pQTLs (rs425535 for CXCL5, 

rs3138036 for MCP2, rs917997 for IL18R1) were previously reported in four studies. This 

totalled 23 comparisons. We report two pQTL associations which have not yet been reported 

as genome-wide significant in the literature. These were identified by both OLS regression 



and BayesR+ GWAS strategies. These are rs11700291 for ADA levels and rs1458038 for FGF-

5 levels. 

 

Additionally, we extracted beta coefficients for all pQTLs which have been previously reported 

as genome-wide significant in the literature. We sought to determine how well these beta 

coefficients correlated with beta values from our GWAS. This was carried out for all 70 

proteins in our study, using Phenoscanner and manual literature searches. Of note, many of 

these pQTLs were non-significant in our study. Forty-two of the proteins had known pQTLs 

and these were identified across 8 studies (n = 1567 beta comparisons in total). We observed 

a strong correlation between effect sizes for previously reported pQTLs and corresponding 

effect sizes in our study (r: 0.70, 95% CI: [0.67, 0.72], Fig. 2). 

 

Of the 3 proteins with significant CpG sites (n = 3) identified by multiple methods, 1 was 

available for look-up from the EWAS on inflammatory proteins performed by Ahsan et al. (26). 

This CpG-protein association was replicated in our study (cg07839457 (NLRC5) for CXCL9 

levels; betaLBC: -2.91 vs. betaAhsan: -3.26). 

BayesR+ combined analysis – GWAS and EWAS modelled together 

In the combined GWAS and EWAS, 2/3 CpG sites which were concordantly identified across 

all methods were present after adjusting for underlying genetic architecture (Additional file 

2: Table S18). The cis association between cg03938978 and IL18R1 levels was not observed 

after accounting for SNP data, in keeping with the role of rs917997 as a cis-acting mQTL. In 

total, 6 CpG sites were present in the combined BayesR+ model, showing an overlap of 6/8 



CpG sites with the stand-alone BayesR+ EWAS (Additional file 2: Table S11). In addition to the 

cg03938978 and IL18R1 association, the association between cg05575921 and TGF-alpha was 

also attenuated after accounting for genetic factors.  

 

Eighteen pQTLs were identified in the combined BayesR+ analysis which accounted for 

genetic and epigenetic data together. Of these, 12 were also present in the stand-alone 

BayesR+ GWAS alone (Additional file 2: Table S2), with a further 3 sites directly replicating 

independent pQTLs identified by OLS regression models (Additional file 2: Table S5). Of the 

remaining 3 sites, one was in high LD with a corresponding variant identified in the stand-

alone BayesR+ GWAS (CCL25: trans variants at FUT2, rs602662 and rs485186, respectively). 

One pQTL (rs9899183) for TWEAK was in low LD with the pQTL for TWEAK levels identified by 

OLS regression. The remaining pQTL identified in the combined analysis (rs17386472) was 

associated with GDNF levels. GDNF did not have a significant genetic signal in the stand-alone 

BayesR+ GWAS and although OLS regression identified pQTLs for GDNF, none of these 

survived multiple testing correction following conditional and joint analyses.  

Evaluating causal associations between blood inflammatory proteins and Alzheimer’s risk 

Using two-sample Mendelian randomisation, we tested whether the 13 inflammatory 

proteins with significant genetic correlates in our study were causally associated with 

Alzheimer’s disease risk (Additional file 2: Table S19). One protein, IL18R1, showed a 

nominally significant association with AD risk (no. of instruments: 1, beta: 0.02, se: 0.01, P: 

0.04; Wald ratio test). Conversely, AD risk was not associated with IL18R1 levels (no. of 

instruments: 22, beta: 0.03, se: 0.21, P: 0.85; inverse variance-weighted method). The 



intercept from MR Egger regression was −0.07 (P = 0.11) which does not provide evidence for 

directional pleiotropy. 

 

 

Fig. 1. Computational strategy of present study. Seventy inflammatory protein biomarkers 

present on the Olink® inflammation panel surpassed quality control procedures. We performed 

genome-wide and epigenome-wide association studies on the levels of these proteins in 876 

healthy older adults who are participants of the Lothian Birth Cohort 1936 study. The primarily 

analysis was Bayesian penalised regression, using BayesR+, which allowed for the modelling of 

relationships between SNPs or CpGs and protein levels whilst accounting for known and unknown 

confounding variables and holding all other molecular markers as covariates. This allowed for 

estimates of single probe or marker coefficients conditional on all other probes or markers in the 



input dataset. Furthermore, this strategy provided joint estimates for the contribution of genetic 

and epigenetic factors towards inter-individual variability in inflammatory protein levels, 

modelled both alone and together. We performed sensitivity analyses to determine whether SNPs 

and CpGs which were significantly associated with protein levels in the BayesR+ methodology 

(posterior inclusion probability > 95%), were also significantly associated with protein levels in 

ordinary least squares (OLS) regression and mixed model-based methods. Only those robustly 

identified SNPs and CpGs which were present in all methods (OLS and BayesR+ for GWAS, and 

OLS, mixed model (OSCA) and BayesR+ for EWAS) were considered for downstream analyses, 

including colocalisation, Mendelian randomisation and pathway enrichment analyses. 

Importantly, this also showed how well the different methods overlapped in relation to their 

identification of molecular correlates of inflammatory protein levels, and their estimates for 

phenotypic variance in protein levels explained by genetic and epigenetic factors. This is an 

important result of the present study. Protein data were pre-corrected for age, sex, array and 

ancestry. Additionally, where possible, the same covariates were controlled for across all 

methods, such as Houseman-estimated white blood cell proportions for EWAS analyses. Multiple 

testing correction was carried out by the Bonferroni method, accounting for all SNPs or CpGs used 

in the respective analyses. Image created using Biorender.com.    

 

 

 

 



 

Fig. 2. Correlation of beta values for pQTL associations derived from literature with beta values from the 

present study. SNPs which were in high linkage disequilibrium (r2 ≥ 0.8) with input SNPs on Phenoscanner 

or from manual extraction of relevant studies were included in the analyses.   

 

 

 

 

 



Table 1. Overlap between conditionally significant pQTLs identified by both OLS regression 

and BayesR+ and previously reported genome-wide significant pQTLs in literature. 

Protein SNP Beta from Literature Study Beta from Hillary et 

al. 

CCL25 rs2032887 -0.30 Sun B -0.67 

CCL25 rs2032887 -0.72 Höglund J -0.70 

CD6 rs2032887 0.78 Höglund J 0.41 

CST5 rs11230563 0.65 Höglund J 0.68 

CXCL5 rs425535 0.24 Sun B 0.57 

CXCL5 rs425535 0.95 Höglund J 0.57 

CXCL5 rs425535 0.40 Sun W 0.57 

CXCL5 rs425535 NA  Enroth S 0.57 

CXCL6 rs6851997 -0.61 Folkersen L -0.37 

CXCL6 rs6851997 -0.67 Höglund J -0.61 

IL10RB rs2247526 0.63 Höglund J 0.36 

IL12B rs10045431 -0.66 Höglund J -0.45 

IL12B rs10045431 -0.26 Sun W -0.45 

IL18R1 rs917997 0.96 Suhre K 0.68 

IL18R1 rs917997 0.65 Sun B 0.68 

IL18R1 rs917997 0.89 Sun B 0.68 

IL18R1 rs917997 1.07 Höglund J 0.68 

MCP2 rs3138036 0.47 Suhre K 1.20 

MCP2 rs3138036 0.22 Sun B 1.20 



MCP2 rs3138036 1.23 Höglund J 1.20 

MCP2 rs3138036 NA Di Narzo A 1.20 

MCP4 rs12075 -0.72 Höglund J -0.62 

TNFB rs2229092 -1.76 Höglund J -1.15 
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Manhattan Plots – Hillary et al. 









































Appendix 2

 
Q-Q Plots – Hillary et al. 
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