Identification of disease-associated traits and clonotypes in the Tcell receptor repertoire of monozygotic twins affected by inflammatory bowel diseases

Elisa Rosati¹, Mikhail V. Pogorelyy^{2,8}, C. Marie Dowds¹, Frederik T. Moller^{3,4}, Signe B. Sorensen^{5,6}, Yuri B. Lebedev², Norbert Frey⁷, Stefan Schreiber⁸, Martina E. Spehlman^{7#}, Vibeke Andersen^{5,6,9#}, Ilgar Z. Mamedov^{2,10,11,12#} and Andre Franke^{1*#}

¹Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany

²Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation

³Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark

⁴Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark

⁵Focused Research Unit for Molecular Diagnostic and Clinical Research, University Hospital of Southern Denmark, Aabenraa, Denmark

⁶Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark

⁷Department of Internal Medicine III, University Hospital S.-H., Kiel, Germany,

⁸Department of Internal Medicine I, University Hospital S.-H., Kiel, Germany,

⁹IRS-Center Sønderjylland, University of Southern Denmark, Odense, Denmark

¹⁰Pirogov Russian National Research Medical University (RNRMU)

¹¹Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology

¹²CEITEC, Masaryk university, Brno, Czech Republic

#these authors contributed equally

*correspondence to: Prof. Andre Franke Institute of Clinical Molecular Biology Christian-Albrechts-University of Kiel Rosalind-Franklin-Str. 12 D- 24105 Kiel Germany

E-mail: <u>a.franke@mucosa.de</u> Tel.: +49 179 485 1891

Short title: TCR repertoire analysis in IBD monozygotic twins

Estimation of Mucosal associated invariant T (MAIT) and Natural Killer T cells (NKT) CDR3 α

frequency

In this study we used MAIT and NKT invariant α chains to track frequency of these subsets in bulk repertoire sequencing (RepSeq) data. Because it is possible that conventional T cells recombine the same invariant TCR α chain by chance and thus confound the analysis, we first estimated the probability of each clonotype to originate from a MAIT or NKT cell. The evaluation was performed given the MAIT or NKT invariant TCR α chain recombined by chance using the Bayes theorem, P(MAIT | α M) and P(NKT | α N), respectively.

 α M and α N are sets of known invariant alpha chains for MAIT and invariant NKT (iNKT). The probability of a MAIT/NKT cell using one of these invariant chains is

$P(\alpha M \mid MAIT) = P(\alpha N \mid NKT) = 1$

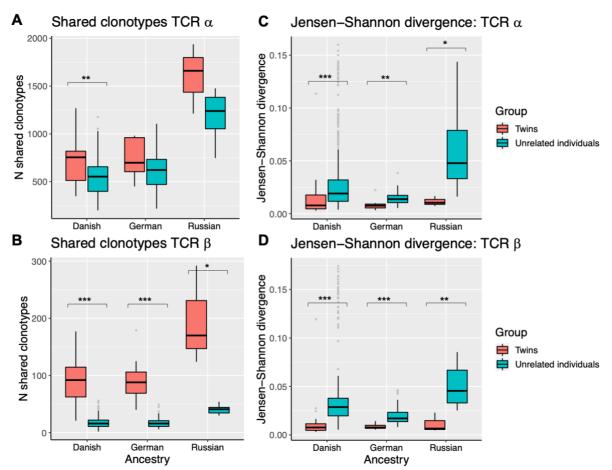
For a conventional T cell (Tconv), the probability of recombining any TCR α chain from α M and α N is given by the sum of the recombination probabilities for the TCR α chains in these respective sets, which was estimated using OLGA tool³⁵:

P(αM | Tconv)=4.4e⁻⁴ P(αN | Tconv)= 5.8e⁻⁶

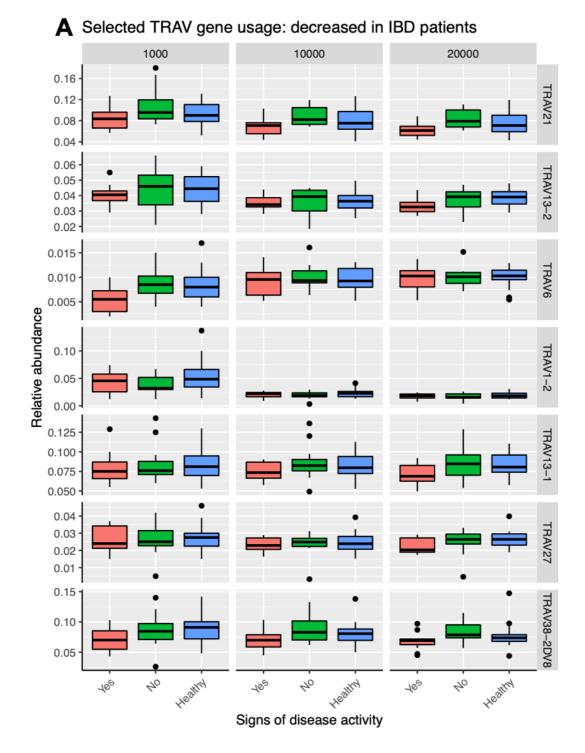
For P(MAIT) and P(NKT), the proportion of these cell subsets in the blood, we used the average frequency of these subsets in the Caucasian population:

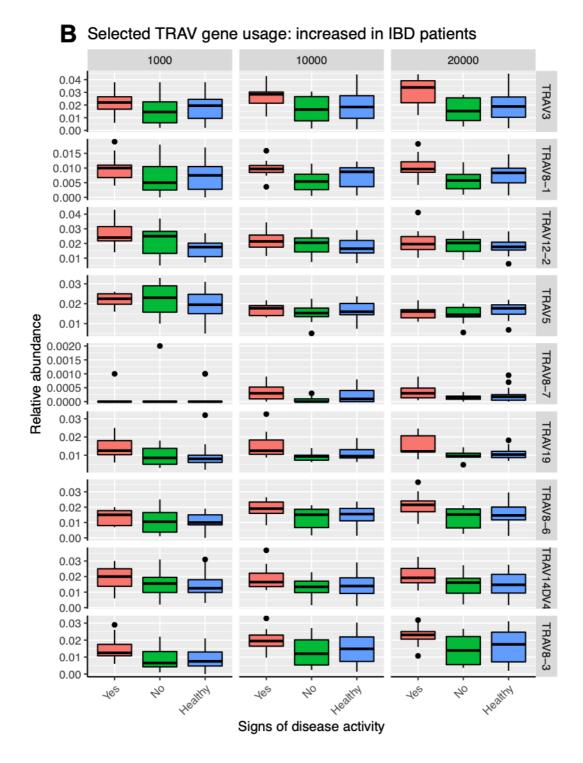
P(MAIT)=3% ³⁶

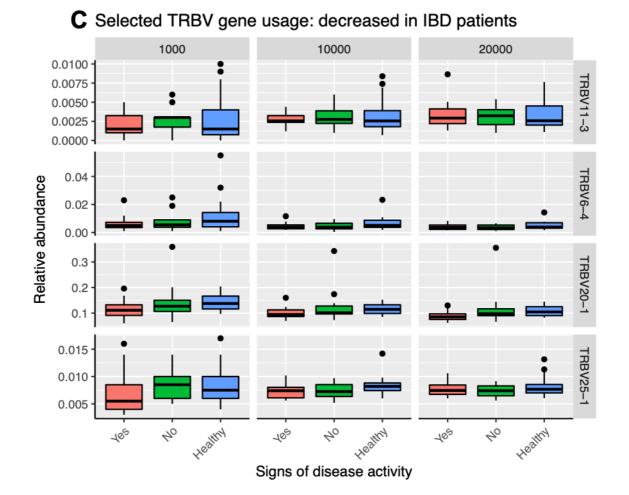
P(NKT)=0.076% 37

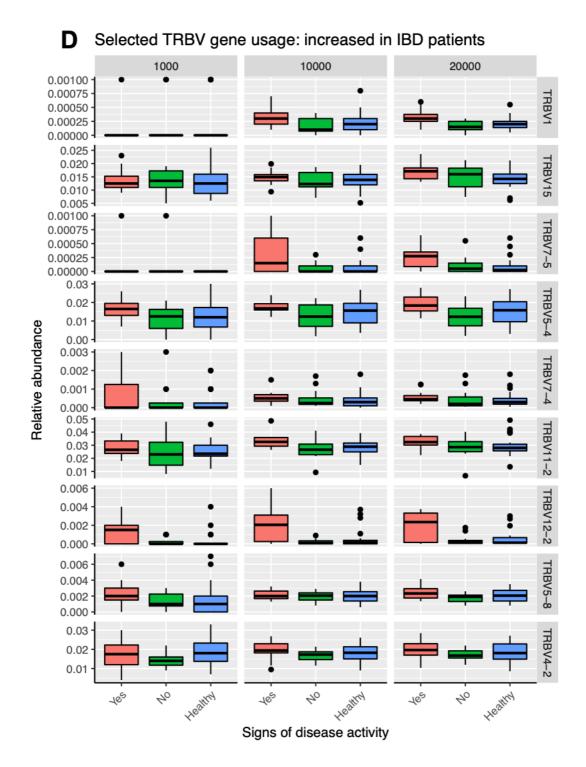

We calculated the probability that, when detecting one of these invariant TCR α sequences, it actually originates from a MAIT cell as:

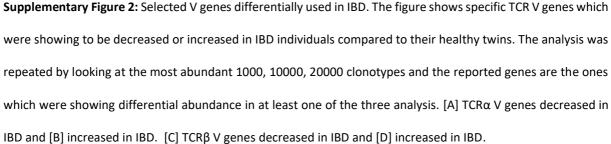
```
P(MAIT \mid \alpha M) = P(\alpha M \mid MAIT) \cdot P(MAIT) / (P(\alpha M \mid MAIT) \cdot P(MAIT) + P(\alpha M \mid Tconv) \cdot (1-P(MAIT))) = 98.6\%
```

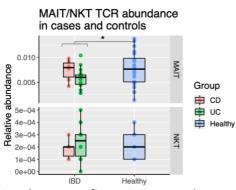

In the same way for NKT cells:

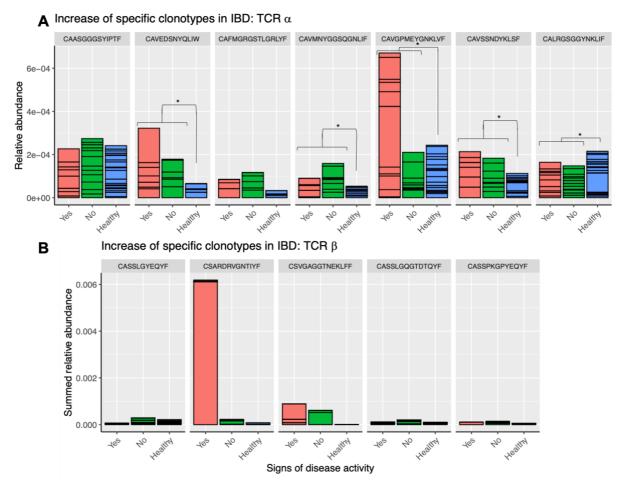

P(*NKT* | *αN*)=99.2%

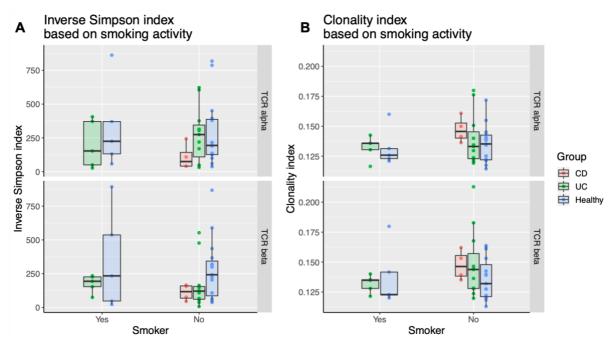

Therefore, if a clonotype carries one of these invariant TCR α chains, the probability that this clonotype is a conventional T cell is lower than 1.5% both for NKT and MAIT TCR α sequences. For analysis of MAIT β TCRs, we employed TCR sequences published in literature, particularly from Howson *et al.*³⁸ Additionally, we used in house produced single-cell data to match known MAIT α TCRs with unknown MAIT β TCRs. A list of all used sequences is available as **Supplementary data 2**.




Supplementary figure 1: Twin specific repertoire features in the 10,000 most abundant clonotypes. Pairwise number of shared clonotypes for **[A]** TCR α [Danish p = 0.0038, German p = 0.07, Russian p = 0.1] and **[B]** TCR β [Danish $p = 9.6 \times 10^{-5}$, German $p = 6 \times 10^{-4}$, Russian p = 0.009]. Pairwise Jensen-Shannon divergence for **[C]** TCR α [Danish $p = 5.7 \times 10^{-13}$, German $p = 5.4 \times 10^{-7}$, Russian p = 0.01] and **[D]** TCR β [Danish $p = 7 \times 10^{-9}$, German $p = 6.6 \times 10^{-6}$, Russian p = 0.004] V gene usage. (*) p-value < 0.05, (**) p-value < 0.005, (***) p-value < 0.005.







Supplementary figure 3: MAIT and NKT cell TCRs abundance among the 10,000 most abundant clonotypes. Cumulative abundance of TCR sequences originating from MAIT [IBD-healthy p = 0.02, CD-healthy p = 0.21,UC-healthy p = 0.08, UC-CD p=0.17] and NKT cells [IBD-healthy p = 0.8, CD-healthy p = 0.09,UC-healthy p = 0.19, UC-CD p=0.3] in IBD patients (CD and UC) and healthy individuals. Abundance of MAIT TCRs seems to be decreased in IBD patients. (*) p-value < 0.05.

Supplementary figure 4: Clonotypes which abundance is increased in IBD patients. Plot is divided in patients with active and inactive IBD and their healthy co-twins. [A] TCR α [IBD-healthy: CAASGGGSYIPTF p = 0.06, CAVEDSNYQLIW p = 0.046, CAFMGRGSTLGRLYF p = 0.1, CAVMNYGGSQGNLIF p = 0.046, CAVGPMEYGNKLVF p = 0.046, CAVSSNDYKLSF p = 0.046, CALRGSGGYNKLIF p = 0.046] and [B] TCR β [IBD-healthy: CSARDRVGNTIYF p = 0.1, CSVGAGGTNEKLFF p = 0.15, CASSLGQGTDTQYF p = 0.1; active-inactive: CASSLGYEQYF p = 0.21, CASSPKGPYEQYF p = 0.21].

Supplementary figure 5: Impact of smoking behaviour on peripheral TCR repertoire diversity. Smokers (yes) and non-smokers (no) are compared as well as healthy individuals and IBD patients. **[A]** Inverse Simpson diversity index for TCRα (top panel) and TCRβ (bottom panel) **[B]** TCR clonality (inverse of Shannon entropy) for TCRα (top panel) and TCRβ (bottom panel). Diversity values calculated on downsampled data. There were no statistically significant differences between the groups.