Manuscript Title: The Effect of Lifelong Endurance Exercise on Cardiovascular Structure and Exercise Function in Women

Authors: Graeme Carrick-Ranson, Nikita M. Sloane, Erin J. Howden, Paul S. Bhella, Satyam Sarma, Shigeki Shibata; Naoki Fujimoto, Jeffrey L. Hastings, and Benjamin D. Levine

Animal model used, if applicable: NA

Underlying hypothesis:

We hypothesized that \dot{VO}_2 max, exercise stroke volume, LV mass and blood volume would be significantly larger and LV chamber compliance more "youthful" in women who had performed lifelong exercise compared to older untrained women and would reflect those observed in the middle-aged untrained women.

Definitions of 'n':

[Define 'n'. If definitions differ, please indicate which definition applies to which experimental question number.]

Statistical summary table:

Experimental question number*	Finding/ conclusion	Experimental location/ variable e.g. cortex vs cerebellum or genotype	Mean value (or other summary statistic)	SD	n (value)	P**	Units	Data comparisons e.g. WT vs KO	Statistical test	Any other variable e.g. subjects' age or sex	Figure/table in which data are presented	Comments e.g. observation
Cardiac output (L/min) at maximal exercise is larger in older trained (OT) women compared to older untrained (OU) and middle- aged (MA) women.	Maximal cardiac output (L/min) is significantly larger in OT women compared to older OU and MA	Maximal cardiac output	Mean MA 11.7 OU 10.0 OT 14.1	SD MA 2.0 OU 1.6 OT 2.7	MA n=22 OU n=35 OT n=13	OT vs. OU p<0.001 OT vs. MA p<0.001 MA vs. OU p<0.001	L/min	OT vs. OU OT vs. MA MA vs. OU	Repeated measures ANOVA Group main effect p<0.001 Bonferroni <i>post hoc</i> testing	NA	Figure 1A	

Stroke volume at maximal exercise is larger in older trained (OT) women compared to older untrained (OU) and middle- aged (MA) women.	Maximal stroke volume was significantly larger in OT compared to OU and MA	Maximal stroke volume	Mean MA 67.0 OU 61.2 OT 84.6	SD MA 13.3 OU 10.0 OT 17.5	MA n=22 OU n=35 OT n=13	OT vs. OU p<0.001 OT vs. MA p<0.001 MA vs. OU p=0.282	ml	OT vs. OU OT vs. MA MA vs. OU	Repeated measures ANOVA Group main effect p<0.001 Bonferroni <i>post hoc</i> testing	NA	Not shown	
Stroke index at maximal exercise is larger in older trained (OT) women compared to older untrained (OU) and middle- aged (MA) women.	Maximal stroke index was significantly larger in OT compared to OU and MA	Maximal stroke index	Mean MA 39.1 OU 35.2 OT 53.7	SD MA 6.4 OU 5.7 OT 11.7	MA n=22 OU n=35 OT n=13	OT vs. OU p<0.001 OT vs. MA p<0.001 MA vs. OU p=0.137	ml/m ²	OT vs. OU OT vs. MA MA vs. OU	Repeated measures ANOVA Group main effect p<0.001 Bonferroni <i>post hoc</i> testing	NA	Figure 1B	
Stroke volume relative to fat- free mass is larger at maximal exercise in older trained (OT) women compared to older untrained (OU) and middle- aged (MA) women.	Maximal stroke volume relative to fat free mass was significantly larger in OT compared to OU and MA	Maximal stroke volume relative to fat-free mass	Mean MA 1.62 OU 1.50 OT 2.10	SD MA 0.25 OU 0.28 OT 0.31	MA n=21 OU n=35 OT n=12	OT vs. OU p<0.001 OT vs. MA p<0.001 MA vs. OU p=0.250	ml/kgFFM	OT vs. OU OT vs. MA MA vs. OU	Repeated measures ANOVA Group main effect p<0.001 Bonferroni <i>post hoc</i> testing	NA	Figure 1C	
Heart rate at maximal exercise will not be different in older trained (OT) women compared to	Maximal heart rate was not significantly different among groups	Maximal heart rate	Mean MA 175.5 OU 164.7 OT 167.3	SD MA 7.6 OU 10.8	MA n=22 OU n=35 OT n=13		bpm	OT vs. OU OT vs. MA MA vs. OU	Repeated measures ANOVA Group main effect p=0.287	NA	Figure 1D	

older untrained (OU) and middle- aged (MA) women. Mean arterial pressure (MAP) at maximal exercise will be higher in older trained (OT) and older untrained (OU) women compared to	Maximal MAP was not significantly different among groups	Maximal MAP	Mean MA 120.9 OU 118.8 OT 117.4	OT 8.9 SD MA 13.1 OU 14.0 OT 5.3	MA=20 OU=35 OT=13		mmHg	OT vs. OU OT vs. MA MA vs. OU	Repeated measures ANOVA Group main effect p=0.358	NA	Figure 1E	
middle-aged (MA) women. Effective elastance index at maximal exercise will be lower in older trained (OT) women compared to older untrained (OU) and middle- aged (MA) women.	Effective elastance index at maximal exercise was significantly lower in OT women compared to OU women.	Effective elastance index at maximal exercise	Mean MA 4.3 OU 4.7 OT 3.1	SD MA 1.0 OU 0.9 OT 0.7	MA=20 OU=35 OT=13	OT vs. OU p<0.001 OT vs. MA p=0.012 MA vs. OU p=0.186	mmHg/ml/m ²	OT vs. OU OT vs. MA MA vs. OU	Repeated measures ANOVA Group main effect p<0.001 Bonferroni <i>post hoc</i> testing	NA	Figure 1F	
Systemic arterial compliance at maximal exercise will be higher in older trained (OT) women compared to older untrained (OU) and middle- aged (MA) women.	Systemic arterial compliance at maximal exercise was not significantly different in OT women compared to OU and MA women.	Systemic arterial compliance at maximal exercise	Mean MA 0.47 OU 0.43 OT 0.57	SD MA 0.16 OU 0.16 OT 0.14	MA=20 OU=35 OT=13	OT vs. OU p=0.450 OT vs. MA p=1.000 MA vs. OU p=1.000	ml/mmHg/m ²	OT vs. OU OT vs. MA MA vs. OU	Repeated measures ANOVA Group main effect p=0.006 Bonferroni <i>post hoc</i> testing	NA	Figure 1G	

Systemic vascular resistance at maximal exercise will be lower in older trained (OT) women compared to older untrained (OU) and middle- aged (MA) women.	Systemic arterial compliance at maximal exercise was significantly lower in OT women compared to OU but not different compared to MA women.	Systemic vascular resistance at maximal exercise	Mean MA 858.4 OU 974.8 OT 673.7	SD MA 220.3 OU 194.5 OT 171.2	MA=20 OU=35 OT=12	OT vs. OU p=0.023 OT vs. MA p=0.704 MA vs. OU p=0.308	dyne/s/cm ⁻⁵	OT vs. OU OT vs. MA MA vs. OU	Repeated measures ANOVA Group main effect p=0.035 Bonferroni <i>post hoc</i> testing	NA	Figure 1H
The Starling (stroke volume- filling pressure) relationship will not be significantly different between older untrained (OU) and middle- aged (MA) women	The Starling relationship was not significantly different among groups.	Slope of the relationship between stroke volume-filling pressure.	Median (25- 75%) MA 8.0 (3.9 - 9.0) OU 6.0 (5.2 - 7.1) OT 5.6 (4.5 - 6.7)		MA=22 OU=35 OT=13		ml.m ² x mmHg	OT vs. OU OT vs. MA MA vs. OU	Kruskal- Wallis ANOVA on ranks. ANOVA p=0.228	NA	Figure 2A
Preload- recruitable stroke work would not be significantly different among older trained (OT), older untrained (OU) and middle-aged (MA) women	The slope of preload- recruitable stroke work was significantly steeper in OU compared to OT and MA	The slope of preload- recruitable stroke work	Median (25- 75%) MA 103.8 (93.4 – 113.2) OU 177.8 (143.5 - 264.3) OT 116.5 (98.4 139.4)		MA n=22 OU n=35 OT n=13	OT vs. OU p<0.001 OT vs. MA p=0.924 MA vs. OU p<0.001	ml x mmHg	OT vs. OU OT vs. MA MA vs. OU	Kruskal- Wallis ANOVA on ranks. ANOVA p<0.001	NA	Figure 2B
Left ventricular chamber compliance is	Left ventricular chamber	Left ventricular stiffness constant	Median (25- 75%)		MA n=22 OU n=34 OT n=13	OT vs. OU p<0.001	Compliance units	OT vs. OU	Kruskal- Wallis	NA	Figure 3A and Table 4

greater in older trained (OT) women compared to older untrained (OU) but not significantly different compared to middle-aged (MA) women.	compliance was significantly greater in OT compared to OU		MA 0.0650 (0.0487 - 0.0799) OU 0.0854 (0.0609 - 0.138) OT 0.0469 (0.0306 - 0.0543)			OT vs. MA p=0.053 MA vs. OU p=0.018		OT vs. MA MA vs. OU	ANOVA on ranks. ANOVA p<0.001 Dunn's <i>post</i> <i>hoc</i> testing			
Left ventricular transmural pressure-volume relationship is greater in older trained (OT) women compared to older untrained (OU) but not significantly different compared to middle-aged (MA) women.	Left ventricular transmural pressure- volume relationship significantly greater in OT compared to OU	Pericardial constraint	Median (25- 75%) MA 0.0568 (0.0387 - 0.0655) OU 0.0691 (0.0529 - 0.758) OT 0.0336 (0.0185 - 0.0674)		MA n=22 OU n=34 OT n=13	OT vs. OU p=0.007 OT vs. MA p=0.720 MA vs. OU p=0.106	Compliance units	OT vs. OU OT vs. MA MA vs. OU	Kruskal- Wallis ANOVA on ranks. ANOVA p=0.005 Dunn's <i>post</i> <i>hoc</i> testing	NA	Figure 3B	
VO ₂ max in absolute levels is larger in older trained (OT) women compared to older untrained (OU) and middle- aged (MA) women.	VO₂max in absolute levels is larger mass was significantly larger in OT compared to OU and MA	Maximal oxygen uptake (VO2max) in absolute levels (L/min)	Mean MA 1.60 OU 1.42 OT 1.81	SD MA 0.29 OU 0.24 OT 0.20	MA n=22 OT n=35 OU n=13	OT vs. OU p<0.001 OT vs. MA p=0.054 MA vs. OU p=0.034	ml/min	OT vs. OU OT vs. MA MA vs. OU	One factor ANOVA ANOVA p<0.001. Bonferroni <i>post hoc</i> testing	NA	Table 3	
VO ₂ max relative to total body mass is larger in older trained (OT)	VO₂max relative to total body mass was	Maximal oxygen uptake (VO2max)	Median (25- 75%)		MA n=22 OT n=35 OU n=13	OT vs. OU p<0.001 OT vs. MA	ml/kg/min	OT vs. OU OT vs. MA	Kruskal- Wallis	NA	Table 3	

	alou ifi an uth			1	1]
women compared to older untrained (OU) and middle- aged (MA) women.	significantly larger in OT compared to OU and MA	relative to total body mass	MA 25.9 (21.6 - 27.8) OU 21.5 (18.5 - 24.3) OT 34.0 (29.2 - 38.9)			p=0.015 MA vs. OU p=0.013		MA vs. OU	ANOVA on ranks. ANOVA p<0.001 Dunn's <i>post</i> <i>hoc</i> testing			
VO ₂ max relative to fat-free mass is larger in older trained (OT) women compared to older untrained (OU) and middle- aged (MA) women.	VO₂max relative to fat- free mass was significantly larger in OT compared to OU and MA	Maximal oxygen uptake (VO2max) relative to fat- free mass	Mean MA 39.1 OU 34.6 OT 46.4	SD MA 4.7 OU 5.4 OT 6.5	MA n=22 OT n=35 OU n=13	OT vs. OU p<0.001 OT vs. MA p=0.001 MA vs. OU p=0.011	ml/kg/min	OT vs. OU OT vs. MA MA vs. OU	One factor ANOVA P<0.001 Bonferroni <i>post hoc</i> testing	NA	Table 3	
Dynamic operating stiffness during LV unloading is greater in older trained (OT) women compared to older untrained (OU) but not significantly different compared to middle-aged (MA) women.	Dynamic cardiac compliance during cardiac unloading was significantly lower in OU women compared to OT women.	Dynamic cardiac compliance	Median (25- 75%) MA 0.47 (0.38 - 0.55) OU 0.58 (0.37 - 0.81) OT 0.41 (0.30 - 0.44)		MA n=22 OT n=35 OU n=13	OT vs. OU p=0.013 OT vs. MA p=0.324 MA vs. OU p=0.538	ΔmmHg/Δml/m ²	OT vs. OU OT vs. MA MA vs. OU	Kruskal- Wallis ANOVA on ranks. ANOVA p=0.015 Dunn's <i>post</i> <i>hoc</i> testing	NA	Table 4	
Dynamic operating stiffness during LV loading is greater in older trained (OT) women compared to	Dynamic cardiac compliance during cardiac unloading was significantly lower in OU women	Dynamic cardiac compliance	Median (25- 75%) MA 1.10 (0.79 - 1.55)		MA n=20 OT n=35 OU n=12	OT vs. OU p=0.006 OT vs. MA p=1.000 MA vs. OU	ΔmmHg/Δml/m²	OT vs. OU OT vs. MA MA vs. OU	Kruskal- Wallis ANOVA on ranks. ANOVA p<0.001	NA	Table 4	

older untrained (OU) but not significantly different compared to middle-aged (MA) women.	compared to OT and MU women.		OU 2.39 (1.20 - 3.83) OT 1.08 (0.95 - 1.62)		p<0.001			Dunn's post hoc testing			
Left ventricular mass is larger in older trained (OT) women compared to older untrained (OU) and middle- aged (MA) women.	Left ventricular mass was not significantly different among groups	Left ventricular mass	Median (25- 75%) MA 77.6 (69.5 - 91.6) OU 76.2 (69.8 - 87.8) OT 78.8 (74.0 - 85.7)	MA n=19 OU n=35 OT n=12		g	OT vs. OU OT vs. MA MA vs. OU	Kruskal- Wallis ANOVA on ranks. ANOVA p=0.820	NA	Table 5	
Left ventricular mass relative to BSA is larger in older trained (OT) women compared to older untrained (OU) and middle- aged (MA) women.	Left ventricular mass relative to BSA was significantly larger in OT compared to OU and MA	Left ventricular mass index	Median (25- 75%) MA 46.5 (41.5 - 48.6) OU 44.7 (41.0 - 49.6) OT 51.8 (48.5 - 53.9)	MA n=19 OU n=35 OT n=12	OT vs. OU p=0.002 OT vs. MA p=0.020 MA vs. OU p=1.000	g/m²	OT vs. OU OT vs. MA MA vs. OU	Kruskal- Wallis ANOVA on ranks. ANOVA p=0.002 Dunn's <i>post</i> <i>hoc</i> testing	NA	Table 5	
Left ventricular mass relative to fat-free mass is larger in older trained (OT) women compared to older untrained (OU) and middle- aged (MA) women.	Left ventricular mass relative to fat-free mass was not significantly among groups	Left ventricular mass relative to fat-free mass	Median (25- 75%) MA 1.9 (1.7 - 2.1) OU 1.9 (1.8 - 2.0) OT 2.0 (1.8 - 2.4)	MA n=18 OU n=35 OT n=12		g/kgFFM	OT vs. OU OT vs. MA MA vs. OU	Kruskal- Wallis ANOVA on ranks. ANOVA p=0.338	NA	Table 5	

Left ventricular	Left	Left ventricular	Mean	SD	MA n=19		ml	OT vs. OU	One factor	NA	Table 5	
end-diastolic	ventricular	end-diastolic			OU n=35				ANOVA			
volume is larger	end-diastolic	volume	MA 101.2	MA	OT n=12			OT vs. MA				
in older trained	volume was		OU 95.4	17.7				MA vs. OU	ANOVA			
(OT) women	not		00 55.4	OU				WA V3. 00	p=0.454			
compared to	significantly		OT 98.8	16.7								
older untrained	different			10.7								
(OU) and middle-	among groups			ОТ								
aged (MA)				13.0								
women.												
Left ventricular	Left	Left ventricular	Mean	SD	MA n=19	OT vs. OU	ml/m ²	OT vs. OU	One factor	NA	Table 5	
end-diastolic	ventricular	end-diastolic			OU n=35	p=0.004			ANOVA			
volume index is	end-diastolic	volume index	MA 58.8	MA	OT n=12			OT vs. MA				
larger in older	volume index		OU 54.7	7.6		OT vs. MA			ANOVA			
trained (OT)	was		00 54.7	OU		p=0.326		MA vs. OU	p=0.005			
women	significantly		OT 63.7	8.3		MA vs.			Bonferroni			
compared to	larger in OT			0.5		OU			post hoc			
older untrained	compared to			OT 8.0		p=0.236			testing			
(OU) and middle-	OU					p 01200			testing			
aged (MA)												
women.												
Left ventricular	Left	Left ventricular	Mean	SD	MA n=18		ml/kgFFM	OT vs. OU	One factor	NA	Table 5	
end-diastolic	ventricular	end-diastolic			OU n=35				ANOVA			
volume relative	end-diastolic	volume	MA 2.5	MA	OT n=12			OT vs. MA				
to fat-free mass is	volume was		OU 2.3	0.4				MA vs. OU	ANOVA			
larger in older	not		00 2.5	OU				IVIA VS. OU	p=0.218			
trained (OT)	significantly		OT 2.5	0.4								
women	different			0.4								
compared to	among groups			OT 0.4								
older untrained												
(OU) and middle-												
aged (MA)												
women.												
Left ventricular	Left	Left ventricular	Median (25-		MA n=19		g/ml	OT vs. OU	Kruskal-	NA	Table 5	
mass-to-volume	ventricular	mass-to-volume	75%)		OU n=35				Wallis			
ratio is larger in	mass-to-	ratio			OT n=12			OT vs. MA	ANOVA on			
older trained (OT)	volume ratio		MA 0.77					MA vs. OU	ranks.			
women	was not		(0.69 - 0.92)									
compared to	significantly								ANOVA			
older untrained									p=0.637			
<u>.</u>												

(OU) and middle- aged (MA) women.	different among groups		OU 0.80 (0.75 - 0.89) OT 0.78 (0.75 - 0.92)									
Total blood volume is larger in older trained (OT) women compared to older untrained (OU) and middle- aged (MA) women.	Total blood volume was not significantly different among groups	Total blood volume	Mean MA 4044.1 OU 4053.3 OT 4018.0	SD MA 592.0 OU 475.9 OT 417.0	MA n=22 OU n=35 OT n=7		ml	OT vs. OU OT vs. MA MA vs. OU	One factor ANOVA ANOVA p=0.986	NA	Table 5	
Total blood volume relative to total body mass is larger in older trained (OT) women compared to older untrained (OU) and middle- aged (MA) women.	Total blood volume relative to total body mass was significantly larger in OT compared to OU	Total blood volume relative to total body mass	Median (25- 75%) MA 62.3 (56.5 - 69.5) OU 60.8 (58.3 - 63.0) OT 67.2 (64.5 - 75.6)		MA n=22 OU n=35 OT n=7	OT vs. OU p=0.015 OT vs. MA p=0.129 MA vs. OU p=0.873	ml/kg	OT vs. OU OT vs. MA MA vs. OU	Kruskal- Wallis ANOVA on ranks. ANOVA p=0.018 Dunn's <i>post</i> <i>hoc</i> testing	NA	Table 5	
Total blood volume relative to fat-free mass is larger in older trained (OT) women compared to older untrained (OU) and middle- aged (MA) women.	Total blood volume relative to fat- free mass was significantly larger in OT compared to OU and MA	Total blood volume relative to fat-free mass	Mean MA 98.5 OU 98.5 OT 109.0	SD MA 9.4 OU 8.2 OT 10.2	MA n=21 OU n=35 OT n=6	OT vs. OU p=0.028 OT vs. MA p=0.039 MA vs. OU p=1.00	ml/kgFFM	OT vs. OU OT vs. MA MA vs. OU	One factor ANOVA ANOVA p=0.028 Bonferroni <i>post hoc</i> testing	NA	Table 5	
Plasma volume is larger in older trained (OT)	Plasma volume was not	Plasma volume	Mean MA 2712.9	SD	MA n=22 OU n=35 OT n=7		ml	OT vs. OU OT vs. MA	One factor ANOVA	NA	Table 5	

women compared to older untrained (OU) and middle-	significantly different among groups		OU 2664.6 OT 2662.6	MA 394.8 OU 318.6				MA vs. OU	ANOVA p=0.868			
aged (MA) women.				OT 325.3								
Plasma volume relative to total body mass is larger in older trained (OT) women compared to older untrained (OU) and middle- aged (MA) women.	Plasma volume relative to total body mass was significantly larger in OT compared to OU	Plasma volume relative to total body mass	Median (25- 75%) MA 43.2 (37.5 - 46.1) OU 40.0 (37.5 - 41.4) OT 44.9 (40.8 - 49.2)		MA n=22 OU n=35 OT n=7	OT vs. OU p=0.015 OT vs. MA p=0.351 MA vs. OU p=0.225	ml/kg	OT vs. OU OT vs. MA MA vs. OU	Kruskal- Wallis ANOVA on ranks. ANOVA p=0.010 Dunn's <i>post</i> <i>hoc</i> testing	NA	Table 5	
Plasma volume relative to fat- free mass is larger in older trained (OT) women compared to older untrained (OU) and middle- aged (MA) women.	Plasma volume relative to fat- free mass was significantly larger in OT compared to OU	Plasma volume relative to fat- free mass	Mean MA 66.1 OU 64.8 OT 71.9	SD MA 6.4 OU 6.1 OT 7.0	MA n=21 OU n=35 OT n=6	OT vs. OU p=0.041 OT vs. MA p=0.158 MA vs. OU p=1.00	ml/kgFFM	OT vs. OU OT vs. MA MA vs. OU	One factor ANOVA ANOVA p=0.046 Bonferroni <i>post hoc</i> testing	NA	Table 5	

*You may use multiple lines for the same question to indicate multiple comparisons

** Authors may wish to make the text bold where p is considered significant against a stated confidence limit