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Model Estimation, Inference, and Updated Results

We propose a parsimonious survival-convolution model for predicting key statistics of
COVID-19 epidemics (e.g., daily new cases) and evaluate public health intervention effect.
We model the transmission rate a(t) as a non-negative piece-wise linear function (linear
spline and assume a(t) ≥ 0). For China and South Korea, a(t) is given as follows:

a(t) =

{
a+0 t < t1
(a0 + a1(t− t1))

+ t ≥ t1
, (s1)

where x+ = max(x, 0) and t1 is the calendar time of reporting the first case. That is,
before the first case is reported, the public is unaware and the infection is latent, so the
transmission rate is assumed to be a constant; however, once the first case is reported, the
public is alerted and various response strategies are gradually introduced and take effect,
so that we expect the transmission rate will decrease (i.e., a1 ≤ 0). In this simple model,
there are three parameters that will be estimated from data, including t0 (the date of the
first case), a0, and a1.

When a massive public health intervention (e.g., nation-wide lockdown) is introduced
at some particular date, we further add an additional linear function after this date and
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introduce a new slope parameter. Thus, the difference in the rate of change in a(t)
before and after an intervention reflects its effect on reducing disease transmission (i.e.,
“flattening the curve”). Furthermore, since the intervention effect may diminish over
time, we introduce slope parameters two weeks after the intervention (considering the
incubation period as 14 days) to capture the longer-term effect. Therefore, for Italy
and US we place additional knots at t2 (the date of national lockdown for Italy and the
declaration of national emergency for US) and t3 (two weeks after t2). The transmission
rate is modeled as:

a(t) =


a+0 t < t1,
(a0 + a1(t− t1))

+ t1 ≤ t < t2,
(a0 + a1(t2 − t1) + a2(t− t2))

+ t2 ≤ t < t3,
(a0 + a1(t2 − t1) + a2(t3 − t2) + a3(t− t3))

+ t ≥ t3.

(s2)

A long observational period is available for Italy. We place another knot four weeks after
t2 to capture potential long-term effect of the intervention.

Let θ denote all parameters in the transmission rate a(t) (e.g, a0, · · · , ak in equations
s1 and s2) and t0. We divide the reported daily new cases into training data for esti-
mating parameters and testing data for validation. Denote by Yo(t1), Yo(t1 + 1), Yo(t1 +
2), ...., Yo(t2), the training data consisting of the daily new cases reported from the date
of the first reported case, t1, to the last date in the training set, t2. To estimate θ using
the training data, first note that the number of daily confirmed tested positive cases is a
measure of the number of infected cases out of transmission due to a positive COVID test
(i.e., Y (t)) observed with error (e.g., reporting error, tested positive but not practicing
social distancing). Second, it is plausible that the error variability is proportional to the
underlying true number of cases (e.g., holds for Poisson random variables). Our model is
Yo(t) = Y (t) +

√
Y (t)ε(t), where ε(t) represents a residual term. Let Y (t; θ) denote the

predicted new case number at day t for a given θ using recursive equations in (1) and (2) in
the main manuscript. We minimize the following loss under a square-root transformation∑

t1≤t≤t2

[√
Yo(t) −

√
Y (t; θ)

]2
(s3)

to estimate θ. The square-root transformation is applied to the daily cases since it is a
variance stabilizing transformation for Poisson counts. Computationally, we perform a
grid search to estimate t0. For each t0, we apply a gradient-based optimizer with adaptive
learning rate (i.e., Adam 1) to obtain other parameters. The algorithm is implemented in
Tensorflow2. We let θ̂ be the minimizer of (s3). With θ̂, we can use equations (1) and (2)
in the main manuscript to predict any new daily cases in future dates. Furthermore, by
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comparing the estimated a(t) (and correspondingly, Rt) before and after a public health
intervention is implemented, we can estimate the intervention effect in terms of the change
of transmission rates under the longitudinal pre- and post-intervention design.

For statistical inference such as obtaining confidence intervals of predicted numbers
or estimated intervention effects, we assume that the standardized residuals,
[Yo(t) − Y (t; θ)] /

√
Y (t; θ), are exchangeable. Thus, permutation method can be used.

We permute the estimated residuals and reconstruct observed cases by adding permuted
residuals multiplied by the square-root of the observed case numbers. We repeat this
process 500 times and re-analyze each set of permuted data to yield a set of estimates for
θ, the corresponding set of predictions for Y (t; θ) and estimated intervention effects. We
obtain 95% confidence intervals using empirical quantiles of the estimates under permu-
tation.

To model the distribution of time to symptom onset since infection, we use the
existing knowledge of SARS-CoV-2 virus incubation period. Previous work3 indicates
that the incubation period for SARS-CoV-2 has an average of 5.2 days, and the longest
time to symptom onset since infection was reported up to 21 days. Thus, we model
the survival function of presenting COVID-19 symptoms as an exponential distribution
with a mean of 5.2 truncated at 21, and use this distribution to approximate S(m) in
equations (1) and (2) in the main manuscript. In a set of sensitivity analyses, we examine
the influence of using a longer mean parameter of this distribution. For the sensitivity
analysis of the US, we use a mean value of 5.2 + 4 = 9.2 (an average of 4-day lag between
symptom onset and reporting of daily new cases was observed in a CDC report4). For
the sensitivity analysis of Italy, we use a mean value of 5.2 + 5.3 = 10.5 days (an average
of 5.3-day lag between symptom onset and reporting of daily new cases was observed in
Italy5). The results in Figure S2 show that the fitted curves of daily new cases under
different parameters of S(m) are identical for US. For Italy, the fitted curves over training
data period are almost identical and there is a slight difference at the tail (Figure S3).

We update the analysis of US epidemic using more training data from Feb 21 to
May 29. The knots are placed on March 13 (national emergency) and every two weeks
(length of incubation period) after that until April 24 to account for potential changes
in the transmission rates. We leave 5 weeks of training data before May 29 to robustly
determine the trend of the transmission rate for future predictions. The observed training
and testing data (May 30 to June 6) are plotted in Figure S4A. With 500 permutation
samples, the 95% confidence interval is included for the testing data after May 30. The
effective reproduction number Rt is calculated using the piecewise transmission rate and
plotted in Figure S4B. Similar to Figure 3B in the main manuscript, the Rt decreases at
a faster rate after the declaration of national emergency on March 13, but slows down
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when Rt is closer to 1.0. Recently, Rt is near a constant between 1.1 and 1.2 without
a clear evidence of decreasing. Although there is a chance to expect less than 100 daily
new cases by November 8 this year (with a predicted total number of cases as 2,714,972),
the confidence interval suggests some possibility that the daily cases will start to increase
again. In fact, some states have experienced an increasing trend in daily new cases since
re-opening (e.g., California, Texas, North Carolina). Given recent data, we can see that
the US is still in the midst of the epidemic by June 7, 2020, and careful mitigation measures
should be maintained to prevent an uptake in daily new cases and another outbreak.
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Figure S1: Latent and confirmed cases on each day in each country. Number of latent
cases on day t (i.e., estimated M(t) − Y (t)) includes all pre-symptomatic cases infected
k days before but have not been detected by day t. Solid lines separate observed number
of cases and predicted number of cases. (A) China. (B) South Korea. (C) Italy. (D)
United States.
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Figure S2: Sensitivity analysis of the US. Observed and predicted daily new cases
comparing using an exponential distribution with a mean of 5.2 (grey) and with a mean
of 9.2 (orange). First dashed line indicates the declaration of national emergency (March
13). Second dashed line indicates two weeks after (March 27). Training data: February
21 to May 1; Testing data: May 2 to May 10. Fitted curves under different parameters
of S(m) are nearly identical.
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Figure S3: Sensitivity analysis of Italy. Observed and predicted daily new cases compar-
ing using an exponential distribution with a mean of 5.2 (grey) and with a mean of 10.5
(orange). First dashed line indicates the national lockdown (March 11). Second and third
dashed lines indicate two weeks after. Training data: February 20 to April 29; Testing
data: April 30 to May 10. Fitted curves under different parameters of S(m) are similar.
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Figure S4: United States: observed and predicted daily new cases, 95% confidence
intervals. First dashed line indicates the declaration of national emergency (March 13).
The second to fourth dashed lines indicate every two weeks after (March 27). Training
data: February 21 to May 29 (11 weeks after declaring national emergency); Testing
data: May 30 to June 6. (A) Observed and predicted daily new cases. (B) Effective
reproduction number Rt.

8


