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Supporting information
S1 Appendix Derivative of synaptic current.

The derivative of the synaptic current can be calculated using the Leibniz integral rule. Starting from Eq 6 and using the
exponential kernel (Eq 3) we obtain
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S2 Appendix Linear activation function and symmetric time constants.
To understand why ReLU activation functions do not recover the time parameters well it could be informative to consider

what happens when we make a linear approximation of the activation function. We start again with Eqs 8 and 9:
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We use a linear activation function, that is f (I) = I. Rewriting Eq 23
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and computing the time derivative
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it is possible to substitute expressions for In and dIn
dt into Eq 22 to get
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which is a single second-order differential equation, describing the firing rate dynamics only in terms of firing rates. We have
two new time constants that govern the dynamics, τ1 = (τs + τr) and τ2 = (τsτr), which are invariant under exchange of τs, τr,
and therefore symmetric. This explains why the time constants are not uniquely recoverable for ReLU units, but instead are
exchangeable for one another.
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