Supplemental information

Context-dependent action of Scc4 reinforces control of the type III secretion system

Leiqiong Gao¹, Yanguang Cong^{1,2}, Gregory Plano³, Xiancai Rao^{1,4}, Lyndsey N. Gisclair¹, Sara Schesser Bartra³, Megan Macnaughtan⁵, and Li Shen^{1*}

Supplemental Table S1 and S2.

Supplemental Figures S1-4.

Relevant Details		Reference/Source	
Strains			
C. trachomatis			
L2/25667R	Plasmid-free strain	Gong <i>et al.</i> (1)	
L2/Scc4	$L^{2/25667R}$ transformed with a plasmid containing P _{tet} -	This study	
	directed synthesis of Scc4	5	
L2/vector	L2/25667R transformed with pBOMBP3	Cong <i>et al.</i> , (2)	
E. coli	1	8	
DH5a	Host cells for cloning	Invitrogen	
DH5- α F' I^q	C2992, Host cell for cloning	New England Biolabs	
BL21(DE3)	Host cell for P_{T7} -directed protein expression	Novogen	
GS345	<i>E. coli</i> K12 MG1655 wild type σ^{70}	provided by Ann	
	* I	Hochschild	
GS235	<i>E. coli</i> K12 MG1655 mutant σ^{70} (D581G)	as above	
GS347	<i>E. coli</i> K12 MG1655 mutant σ^{70} (A544I/D581G)	as above	
FW102 OL2-62	E. coli reporter strain for B2H assay	Rao <i>et al.</i> (3)	
ER2925	methylation deficient E. coli strain	New England Biolabs	
Y. pestis	•	C	
- YP769	Y. pestis strain carrying a plasmid, pCD1- Δ 1234, that is	Schesser Bartra et al, (4)	
	deleted for all six effector Yops and their chaperones.		
YP1283	Y. pestis strain carrying a pCD1 plasmid but is deleted	Schesser Bartra et al (4)	
	for the <i>yopE</i> gene (and a <i>dhfr</i> gene is inserted)		
Cell line			
L929	Mmouse fibroblast cell	ATCC CCL-1	
HeLa 229	Human cervical cancer cell line	ATCC CCL-2.1	
Plasmids			
pCDFScc4	P _{T7/lacUV5} -directed synthesis of the Scc4 fused to an N-	Shen et al., 2015 (5)	
	terminal His6-tag		
pXDCM	P _{T7} -directed synthesis of the Scc4	Rao <i>et al.</i> , (3)	
pLN-σ ^{66R24}	P _{T7} -directed synthesis of <i>N</i> -terminal His6-tagged <i>E</i> .	Cong <i>et al.</i> (2)	
	<i>coli</i> σ^{70} regions 1 (amino acid residues 1-372) fused to		
	regions 2-4 of <i>C. trachomatis</i> σ^{66} (amino acid residues		
	315–571).		
pBAD66	P_{ara} -directed synthesis of chlamydial σ^{66} fused to an N-	Rao <i>et al.</i> , (3)	
	terminal His6-tag		
pIA545	P_{trc} -dircted synthesis of <i>E. coli</i> β subunit of RNAP	Artsimovitch <i>et al.</i> , (6)	
	fused to an N-terminal His6- tag		
pRV_{hctB}	Promoter reporter containing P _{hctB} ::lacZ;	Hua <i>et al</i> . (7)	
pRV_{ompA}	Promoter reporter containing P _{ompA} ::lacZ	This study	
pQF50KgroE	Promoter reporter containing P _{E. coli groE} ::lacZ	Wang <i>et al.</i> (8)	
pBAD24-CopN	ParaB-directed synthesis of C. trachomatis CopN	This study	
pBAD24-	ParaB-directed synthesis of C. trachomatis CopN &	This study	
CopNScc1	Scc1		
pACλcI-β-flap	P_{lacUV5} -directed synthesis of the λ CI protein fused to β -	Rao <i>et al.</i> , (3)	
	flap of <i>C. trachomatis</i>		
pACScc1	P_{lacUV5} -directed synthesis of the λ CI protein fused to	Shen <i>et al.</i> (5),	
	full length C. trachomatis Scc1		
pACScc4	P_{lacUV5} -directed synthesis of the λ CI protein fused to C.	Shen $et al.$ (5)	
	trachomatis Scc4		
pRB-sycN	P_{lacUV5}/P_{lpp} -directed synthesis of the α NTD of <i>E. coli</i>	This study	
	RNAP fused to Yersinia SycN		
pBR-yscB	P_{lacUV5}/P_{lpp} -directed synthesis of the aNTD fused to	This study	
	Yersinia YscB		

Supplemental Table S1. Strains, cell lines and plasmids used in this study

Primer	Sequence (5'-3')	Purpose
copN-rtF	CGCTTCGCTCCTTATATTTC	RT-qPCR
copN-rtR	CCATAACAGCGGTTTTCTCT	
<i>tuf-</i> rtF	GTAACTCTGCCTGAGGGAATTGA	qPCR
<i>tuf-</i> rtR	CACGAATCGCAAATCTCATACCT	RT-qPCR
omcB-rtF	GTTTGCGTTGCCCAGTAGTT	RT-qPCR
omcB-rtR	CACGCTGTCCAGAAGAATGA	
euo-rtF	TCAAGGAGAGCTTCTGTTTGATAAC	RT-qPCR
euo-rtR	TGCGTGTAGCATAGTAAATCTTCTG	
scc1-rtF	CTTGGAAAACTTCCAGAGAATACCT	RT-qPCR
scc1-rtR	TGGTTAGAGATTTCACCGTATCCTA	
sctU-rtF	CTGCGATTACGTTCATTGTCT CC	RT-qPCR
sctU-rtR	ATGATTCTGGGGAGCTGTTTTAAA	
slc1-rtF	ACACTCTGATCGCCTTTATGTTTAC	RT-qPCR
slc1-rtR	GCATAGAGCCTTCTAACAACTTCTC	
scc1-rtF	CTTGGAAAACTTCCAGAGAATACCT	RT-qPCR
scc1-rtR	TGGTTAGAGATTTCACCGTATCCTA	
incD-rtF	CTCTGTAGCCCTGTTTCTGTTTTAG	RT-qPCR
incD-rtR	CTAGTCACAGCTTCTGTAGTCAGCA	
scc4F	TTTAAACTAGAGATGAGCACGTGAATACA	PCR
mcherryR1	TAAATCCTTCTGGAAAAGAGAGCTT	Sequencing

Table S2. Table S2. Primers used for PCR, qPCR or RT-qPCR

Figure S1. Analysis of promoter activity using β -galactosidase reporter assay. The overnight cultures *E. coli* BL21(DE3) cells carrying pCDFScc4 were diluted in fresh medium at the ratio of 1:100 and cultured in LB broth at 37 °C. When bacteria grown to OD₆₀₀=0.2, isopropyl- β -D-thiogalactopyranoside (IPTG) was added to induce Scc4 expression. The control was cultured in the absence of IPTG. The cultures were harvested for β -galactosidase reporter assay with the method described previously (3). The data are presented as mean ± SD of β -galactosidase (miller Units) from one representative experiment with three repeats. At least three independent experiments were performed.

Figure S2 CopN secretion assays using YP1283. (**a**) immunoblot analysis of CopN secretion. *Y. pestis* was cultivated in HIB medium in the presence (+) or absence (-) of 2.5 mM Ca²⁺. After an initial 2-h incubation at 26 °C, IPTG (100 μ M) was added. Bacterial cultures were then shifted to 37 °C and continued culturing for 4 h prior to harvesting. Samples representing culture supernatant and bacterial lysates were resolved in 12% polyacrylamide gels and analyzed by immunoblotting with an anti-CopN antibody, followed by visualization of protein by probing with alkaline phosphatase-conjugated secondary antibodies. (**b**) Ratio of secreted CopN levels (in supernatants) to the intracellular levels (lysates). Protein blot in (**a**) was measured using ImageJ. The red line represent the background.

Figure S3 *C. trachomatis scc4* ribosome-binding site (RBS) weakly functions to direct the initiation of Scc4 synthesis in *E. coli.* (**a**) Schematic diagram showing the cloning strategy to construct pET15b-derived expression vectors: pHisScc4 containing an optimal *E. coli* RBS and pHisRBS-Scc4 containing the *C. trachomatis* RBS upstream of *scc4.* (**b**) Immunoblot analysis of Scc4 expression in *E. coli.* BL21(DE3) cells were transformed with pHisScc4 or pHisRBS-Scc4 and cultured in LB. IPTG (200 μ M) was added to induce protein expression. The protein samples were resolved in 10% (wt/vol) polyacrylamide gels and analyzed by immunoblotting with an anti-Scc4 antibody, followed by visualization of protein by probing with alkaline phosphatase-conjugated secondary antibodies. The protein samples from bacteria culture without IPTG addition were used as the controls.

Figure S4 End-point growth curves of *C. trachomatis* measured by inclusion forming unit assay (IFU assay) of infectious EBs. Infected HeLa cells were sampled for analysis at different times as indicated. The aliquot of dilutions were inoculated onto fresh monolayer HeLa cells and cultured for 40 h. Inclusions were then stained with a mouse monoclonal primary antibody against LGV L2 MOMP, followed by staining with goat anti-mouse IgG Alexa Fluor 567-conjugate secondary antibody. The quantity of inclusion forming units were counted and converted to IFUs/ml. All values are presented as means \pm SD of triplicate samples. An arrow shows the close similarities of IFUs among each strain at 32 h pi.

References:

- 1. Gong S, Yang Z, Lei L, Shen L, Zhong G. 2013. Characterization of *Chlamydia trachomatis* plasmid-encoded open reading frames. J Bacteriol 195:3819-3826.
- 2. Cong Y, Gao L, Zhang Y, Xian Y, Hua Z, Elaasar H, Shen L. 2016. Quantifying promoter activity during the developmental cycle of *Chlamydia trachomatis*. Scientific Reports 6:27244.
- Rao X, Deighan P, Hua Z, Hu X, Wang J, Luo M, Wang J, Liang Y, Zhong G, Hochschild A, Shen L.
 2009. A regulator from Chlamydia trachomatis modulates the activity of RNA polymerase through direct interaction with the β subunit and the primary σ subunit. Genes & Development 23:1818-1829.
- 4. Bartra SS, Jackson MW, Ross JA, Plano GV. 2006. Calcium-regulated type III secretion of Yop proteins by an Escherichia coli hha mutant carrying a Yersinia pestis pCD1 virulence plasmid. Infection and immunity 74:1381-1386.
- 5. Shen L MM, Frohlich KM, Cong Y, Goodwin OY, Chou CW, LeCour L Jr, Krup KL, Luo M, Worthylake DK. 2015. Multipart Chaperone-effector Recognition in the Type III Secretion System of Chlamydia trachomatis. J Biol Chem:Oct 5. pii: jbc.M115.670232. [Epub ahead of print].
- 6. Artsimovitch I, Vassylyeva, M.N., Svetlov, D., Svetlov, V., Perederina, A., Igarashi, N., Matsugaki N, Wakatsuki, S., Tahirov, T.H., and Vassylyev, D.G. . . 2005. Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins. Cell 122:351-363.
- Hua Z, Rao X, Feng X, Luo X, Liang Y, Shen L. 2009. Mutagenesis of Region 4 of Sigma 28 from Chlamydia trachomatis Defines Determinants for Protein-Protein and Protein-DNA Interactions. Journal of Bacteriology 191:651-660.
- 8. Wang Y, deHaseth PL. 2003. Sigma 32-dependent promoter activity in vivo: sequence determinants of the groE promoter. Journal of bacteriology 185:5800-5806.