TABLE S1 Probability of receiver domain K+1 amino acid given K+2 amino acid								
	ins with Indicated							
Amino	Abundance	Amino Acid at K+2	that have Pro,	<u>Asp, or Ser at K+1</u>				
at K+2	at K+2 (%)	Pro	Asp	Ser				
Any	100	82	5.3	2.9				
Phe	39	99	0.1	0.2				
Val	15	91	4.2	1.1				
lle	13	92	3.1	0.6				
Leu	5.8	92	1.1	2.7				
Tyr	4.7	99	0.1	0.2				
Trp	1.7	98	0.4	0.4				
Ala	4.9	33	26	12				
Ser	3.1	24	17	16				
Thr	2.5	23	37	7				

TABLE S1 Probability of receiver domain K+1 amino acid given K+2 amino acid

Total sample size was 33,252 sequences (1).

Am	ino aci	d at		k_{phos}/K_{SPAM}		k _{dephos} /K _{1/2 PAM}			
T+1	T+2	K+1	K+2	(M ⁻¹ s ⁻¹)	n	(M ⁻¹ s ⁻¹)			
Ala	Glu	Pro	Phe	8.1 ± 1	3	8.8 ± 1 ^a			
Ala	Glu	Pro	Val	160 ± 6	3	170 ± 20 ^a			
Ala	Glu	Pro	lle	150 ± 0	2	190 ± 30 ^a			
Thr	Ser	Pro	Phe	3.5 ± 0.7 ^b		3.1 ± 0.9^{c}			
	Am T+1 Ala Ala Ala	Amino aci T+1 T+2 Ala Glu Ala Glu Ala Glu	Amino acid atT+1T+2K+1AlaGluProAlaGluProAlaGluPro	Amino acid atT+1T+2K+1K+2AlaGluProPheAlaGluProValAlaGluProIle	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			

TABLE S2 Comparison of *E. coli* CheY autophosphorylation rate constants determined by k_{obs} or $K_{1/2}$ methods

^aValue from Table 1. ^bValue from (2) ^cValue from Table 3.

	. 00 Di	iang anning for Der 3 of				
<u>Amino</u>	acid at	k _{dephos} ^a	k _{dephos} /K _{1/2 PAM} ^a	K _d BeF ₃ ⁻		
K+1	K+2	(min ⁻¹)	(M ⁻¹ s ⁻¹)	(µM)	n	
Pro	Phe	3.5 ± 0.3	9.0 ± 1	23 ± 6	4	
Pro	Tyr	9.1 ± 0.3	27 ± 2	18 ± 10	3	
Pro	Ser	5.8 ± 0.3	44 ± 3	8.7 ± 1	3	
Pro	Val	7.6 ± 0.3	170 ±20	3.6 ± 0.7	3	
Pro	Ala	8.7 ± 1	730 ±90	0.70± 0.07	3	
a\/alua	o from T	able 2				

TABLE S3 Binding affinity for BeF₃⁻ of *E. coli* CheY mutants altered at K+2

^aValues from Table 2.

Amino acid at	Amino acid at	Expected	Actual		
K+1	K+2	Value ^b	Value ^c	Difference ^d	
k _{dephos} /K _{1/2 PAM}					
Asp	Ala	3.5	1.4	-2.1	
Asp	Thr	1.6	1.3	-0.25	
Asp	Val	2.1	1.1	-1.0	
Ser	Ala	4.8	1.5	-3.3	
<i>k_{dephos}</i>					
Asp	Ala	1.0	0.49	-0.53	
Asp	Thr	0.68	0.51	-0.17	
Asp	Val	0.89	0.92	0.03	
Ser	Ala	1.2	0.80	-0.38	

TABLE S4 Combined effects of substitutions at K+1 and K+2 on *E. coli* CheY autophosphorylation and autodephosphorylation rate constants^a

^aRate constants from Table 3.

^bExpected value = In (rate constant for K+1 mutant/wild-type rate constant) + In (rate constant for K+2 mutant/wild-type rate constant), in units of -RT.

^cActual value = In (rate constant for K+1/K+2 mutant/wild-type rate constant), in units of -RT.

^dDifference = Actual value - Expected value, in units of -RT. A difference with an absolute value of less than ln2 = 0.69 suggests no significant interaction (less than a factor of 2) between the kinetic effects of substitutions at K+1 and K+2, i.e. the effects are additive. A difference < -ln2 indicates antagonism and a difference > ln2 indicates synergy.

autophotophoty										
Amino acid at	<u>Amino acid at</u>	Expected	Actual							
D+2 T+1 T+2	K+2	Value ^b	Value ^c	Difference ^d						
k _{dephos} /K _{1/2 PAM}										
Glu Ser Val	Ser	2.6	2.7	0.061						
Glu Ser Leu	Gln	4.0	4.0	-0.029						
Gln Ala Asn	Val	4.3	4.0	-0.37						
Asn Thr Ser	Val	1.9	1.1	-0.77						
Glu Ser Arg	Tyr	4.1	3.4	-0.70						
K _{dephos}										
Glu Ser Val	Ser	1.8	1.3	-0.51						
Glu Ser Leu	Gln	2.0	1.8	-0.23						
Gln Ala Asn	Val	0.22	-0.090	-0.31						
Asn Thr Ser	Val	0.72	-0.090	-0.81						
Glu Ser Arg	Tyr	1.5	1.0	-0.52						
0	-									

TABLE S5 Combined effects of substitutions at D+2/T+1/T+2 and K+2 on <i>E. coli</i> CheY
autophosphorylation and autodephosphorylation rate constants ^a

^aRate constants from Table 3.

^bExpected value = In (rate constant for D+2/T+1/T+2 mutant/wild-type rate constant) + In (rate constant for K+2 mutant/wild-type rate constant), in units of -RT.

^cActual value = In (rate constant for D+2/T+1/T+2/K+2 mutant/wild-type rate constant), in units of -RT.

^dDifference = Actual value - Expected value, in units of -RT. A difference with an absolute value of less than ln2 = 0.69 suggests no significant interaction (less than a factor of 2) between the kinetic effects of substitutions at D+2/T+1/T+2 and K+2, i.e. the effects are additive. A difference < -ln2 indicates antagonism and a difference > ln2 indicates synergy.

<u>Amino acids at</u>	All	OmpR/	FixJ/		-	Single	Hybrid	· · · · · · · · · · · · · · · · · · ·
K+1 K+2	receivers	PhoB	NarL	NtrC	LytR	domain	kinases	Other
Pro Phe	40	84	7.8	48	21	38	27	26
Pro Ile/Leu/Val ^c	29	7.2	5.3	32	68	36	49	34
Pro Trp/Tyr	6.2	4.9	0.5	11	6.1	5.8	9.1	6.9
Pro Ala	1.6	0.6	0.2	1.3	0.9	2.5	1.6	3.2
Pro Cys/Gly/Ser/Thr	2.6	1.6	0.3	3.1	0.4	4.1	1.2	6.7
Pro Asn/Gln/Met	0.7	0.0	0.0	0.2	0.1	1.5	0.7	1.1
Pro Arg/Asp/Glu/His/Lys	0.9	0.0	0.0	0.1	0.0	0.8	0.1	4.7
Pro Pro	0.5	0.1	0.1	0.7	0.2	1.0	0.2	1.3
Pro Any	82	99	14	96	96	90	89	84
Asp Any	5.3	0.3	35	0.3	0.9	1.5	1.4	2.2
Ser Any	2.9	0.3	11	0.4	0.6	3.3	2.1	1.8
Gly Any	2.4	0.2	5.8	1.8	0.3	1.3	3.8	2.7

			-
Frequency of er	mine eside et l/ i	1 and 1/10 hure	esponse regulator family ^a
Frequency of an	nno acios al K+	$I = A \cap O + Z \cap V \cap O$	-soonse requiator family

^aResponse regulator families from (1). Sample sizes were: All receivers, 33,252; OmpR/PhoB, 6,697; FixJ/NarL, 4,081; NtrC, 1,920; LytR, 1,383; Single domain, 5,905; Hybrid kinase, 8,113; Other, 5,345.

^bValues <1% rounded to nearest 0.1%.

^cThe groupings of K+2 amino acids follow the clusters of rate constants indicated in Figure 2. We have no kinetic data for the effects of Cys, His, or Pro at K+2. Based on the clustering of K+2 amino acid abundance by side chain chemical properties, here Cys is grouped with Ser/Thr and His is grouped with charged amino acids.

REFERENCES

- 1. Page SC, Immormino RM, Miller TH, Bourret RB. 2016. Experimental analysis of functional variation within protein families: Receiver domain autodephosphorylation kinetics. J Bacteriol 198:2483-2493. https://doi.org/10.1128/JB.00853-15
- Immormino RM, Silversmith RE, Bourret RB. 2016. A variable active site residue influences the kinetics of response regulator phosphorylation and dephosphorylation. Biochemistry 55:5595-5609. https://doi.org/10.1021/acs.biochem.6b00645