

Fig. S1. The effect of the *eep*- and the *camS*-deletion on the growth of *S. aureus*.

OD₆₀₀ in TSB was measured every hour for 12 h. WT, *S. aureus* USA300; *eep*, the

eep-deletion mutant; *camS*, the *camS*-deletion mutant.

Fig. S2. The confirmation of the overexpression of CamS by Western blot

analysis. An equal number of cell pellets was used for the analysis (see Materials and Methods). CamS protein was detected with anti-His-tag antibody.

Fig. S3. Eep does not affect the gross protein-secretion profile. The supernatants of bacteria were collected by centrifugation, passed through 0.22 μm filter, and precipitated by TCA. The samples were loaded on 12% SDS-PAGE gel and stained with Coomassie brilliant blue. WT, *S. aureus* USA300; *eep*, the *eep*-deletion mutant.

Fig. S4. The quantification of Western blot results for SpA (A) and SaeP (B). The protein bands were quantified by Image J.*, p < 0.05;***, p < 0.001 by unpaired, two-tailed Student's t-test. WT, *S. aureus* USA300; *eep*, the *eep*-deletion mutant; V, the vector pCL55; p*eep*, pCL55 containing the *eep* gene; p*eep* E22A, p*eep* containing the E22A mutation; p*eep* D378A, p*eep* containing the D378A mutation.

Fig. S5. Eep is not required for biofilm formation. The effect of the *eep*-deletion on the biofilm formation of *S. aureus*. The extent of biofilm formation was determined by crystal violet staining of the bacterial cells.

Fig. S6. The confirmation of the additional expression of the adhesins SpA, SasG, and FnbA. (A-C) Western blot analysis for SpA (A), SasG (B) and FnbA (C). An equal number of cells was used for the analysis (see Materials and Methods). SpA protein was detected with anti-SpA antibody, whereas SasG and FnbA proteins were detected with anti-His-tag antibody. Pellets, cell pellets; Sup, supernatant. Due to extensive degradation of FnbA, we could not compare the FnbA expression in the

culture supernatant. (D) The quantification of the Western blot results. The scanned images of the protein bands were quantified by Image J. *, p <0.05; ***, p < 0.001 by unpaired, two-tailed Student's t-test. WT, *S. aureus* USA300; *eep*, *eep*-deletion mutant; p*spA*, pCL55-*spA*; p*sasG*, pOS1-*sasG*-His; p*fnbA*, pOS1-*fnbA*-His.

Fig. S7. The effect of the *eep*-deletion on the TLR2-mediated activation of IL8 secretion. The HEK293 cells were transfected with pcDNA3.0-TLR2 for 6 h. Then, the transfected cells were stimulated with either WT or the *eep*-deletion mutant for 24 h. Finally, the IL8 in the culture supernatant was measured by ELISA assay. -, no bacteria; WT, the wild-type USA300; *eep*, the *eep*-deletion mutant of USA300.

Fig. S8. Full-length Western blots.(A) Full-length blots for Fig 1D. (B) Full-length

blots for Fig 3. (C) Full-length blots for Fig 4.

Strain or plasmid	Relevant characteristic	Origin or reference
E. coli		
DH5a	Plasmid free, restriction deficient	New England Biolabs
S. aureus		
RN4220	Restriction deficient, prophage cured	(1)
USA300-P23	USA300-0114 without plasmid 2 and 3	(2)
USA300∆eep	USA300-P23 with the deletion of <i>eep</i>	This study
USA300∆camS	USA300-P23 with the deletion of <i>camS</i>	This study
NMΔ <i>phoB</i>	Newman strain with the deletion of <i>phoB</i>	(3)
Plasmid		
pKOR1	Allelic replacement plasmid	(4)
pIMAY	Allelic replacement plasmid	(5)
pKOR1∆ <i>camS</i>	pKOR1 containing <i>camS</i> deletion cassette	This study
pIMAY∆eep	pIMAY containing <i>eep</i> deletion cassette	This study
pCL55	An integration vector for S. aureus	(6)
	pCL55 carrying the <i>eep</i> gene with His-tag	This study
peep	sequence at the C-terminus	
p <i>eep</i> E22A	peep with the E22A mutation	This study
p <i>eep</i> D378A	peep with the D378A mutation	This study
peep S2-phoB	peep where the phoB gene without signal	This study

Table S1. Bacterial strains and plasmids used in this study.

	peptide sequence was inserted at S2 position		
n E29 nhoD	peep where the phoB gene without signal	This study	
peep E38-pnoB	peptide sequence was inserted at E38 position		
	peep where the phoB gene without signal	This study	
реер №1-рпов	peptide sequence was inserted at N91 position		
n con T250 nhoD	peep where the phoB gene without signal	This study	
peep 1230-phob	peptide sequence was inserted at T250 position		
neen G330 nhoB	peep where the phoB gene without signal	This study	
peep 0339-pilob	peptide sequence was inserted at G339 position		
n	peep where the phoB gene without signal	This study	
peep 1307-pilob	peptide sequence was inserted at Y387 position		
near D422 nhoP	peep where the phoB gene without signal	This study	
<i>peep</i> D422-pilob	peptide sequence was inserted at Y387 position		
nsn4	pCL55 carrying the spa gene with its own	This study	
pspa	promoter		
pOS1	A multi-copy plasmid for S. aureus	(7)	
001 01	pOS1 carrying the <i>camS</i> gene with His-tag at	This study	
pOS1-cumo-mo	the C-terminus		
nOS1 ang P Hig	pOS1 carrying the <i>spsB</i> gene with His-tag at	This study	
p031- <i>spsb</i> -1115	the C-terminus		
nOS1_fnh4_His	pOS1 carrying the <i>fnbA</i> gene with His-tag at	This study	
POD1 J1001-1115	the C-terminus		

pOS1 carrying the *sasG* gene with His-tag

This study

pOS1-sasG-His

sequence at the C-terminus

	Table S2. Oligonucleotides used in this study.	
ıme	Sequence $(5' \rightarrow 3')$	

Name	Sequence $(5' \rightarrow 3')$	Target
P1986	ATTGGATTGGAAGTAC	LIC for pIMAY
	GCTTTGGCAGTTTATTCTTGACATGTA	LIC IOI PINIAI
P1987	ATTGGAAGTGGATAAC	LIC for pIMAY
	CGAAGTGATCTTCCGTCACAGGTATT	LIC IOI PINIAI
P2481	TACTTCCAATCCAATG	For <i>can</i> deletion
	GGCGGCCTTGTGTTAATGATA	For eep detetion
P2482	AATGCCTGCTCTTTTCGCAAAAAAC	For eep deletion
P2483	GTTTTTTGCGAAAAGAGCAGGCATT	For <i>can</i> deletion
	TTTAGGAGGATAAATAATTATG	For eep detetion
P2484	TTATCCACTTCCAATG	For <i>can</i> deletion
	CTAATTCAATATTATCTGTGCC	For eep detetion
P236	ATTGGAAGTGGATAACGGTACCGGTTCCGAGGCTC	LIC for pKOR1
P237	ATTGGATTGGAAGTACGGGCCCGAGCTTAAGACTGG	LIC for pKOR1
P/7/	TACTTCCAATCCAATG	For came deletion
1 4/4	CGTTTCATGATGTAGCAGCTATG	Tor cam's detetion
P475	TTGTAAATTAAAGATAATAAAAAGG	For cams deletion
D176	CCTTTTTATTATCTTTAATTTACAA	For came deletion
14/0	GACATACCCCTCTAACTATTTA	For <i>cams</i> detetion
D/77	TTATCCACTTCCAATG	For came deletion
14//	CAGGTGTAGTCACACCTACTGC	For <i>cams</i> detetion
D25	ATTGGAAGTGGATAAC	nCI 55
155	CGGAGGAGGGATGTAAAATGTGG	peess
D80	ATTGGATTGGAAGTAC	pCI 55
1 80	GAATTCTTGAAGACGAAAGGGCCTCG	peess
D7/0	TTATCCACTTCCAATG	For <i>can</i> complement
F 249	GCTAATATATTAGCATTGATTGC	For eep complement
D79	TACTTCCAATCCAATGctaatgatgatgatgatgatgTAAGAAATAT	For an complement
F / O	CGTCGAATATC	For eep complement
PL85	GTAACTGTTCAT gca TATGGCCATATG	For <i>eep</i> E22A
PL86	CATATGGCCATA TGC ATGAACAGTTAC	For eep E22A
PL87	CCTATTCCTGCACTA gca GGTGGTCGTATT	For eep D378A
PL88	AATACGACCACC TGC TAGTGCAGGAATAGG	For eep D378A
PL22	TATTTAGTTACAATAATTGCA	For peep S2-phoB
PL23	GCTCACTCGCTACACCTCGATTG	For peep S2-phoB
PL24	CAATCGAGGTGTAGCGAGTGAGC	For near \$2 shaD
	ATGCAATCCGATAAAAGTTCTAAAG	FOI peep 52-phob
PL25	TGCAATTATTGTAACTAAATA	For peep S2-phoB

	CTTGAATATATCAAATATTATTTTTGC		
PL80	TTTGCGATCGGTATGGGGCCA	For peep	E38-phoB
PL81	TTCTGGACACATAATGCCTGCTC	For peep	E38-phoB
DI 02	GAGCAGGCATTATGTGTCCAGAA	Ean norm E20 -1- D	E29 aboD
PL82	ATGCAATCCGATAAAAGTTCTAAAG	For peep	E38-phoB
DI 02	TGGCCCCATACCGATCGCAAA	For noon	E29 mboD
PL83	CTTGAATATATCAAATATTATTTTTGC	For peep	Езе-риов
PL26	GAAGAAAATGAAATAACACATATC	For peep	N91-phoB
PL27	ATTAAGTTTAATTTTAACGTTCATAC	For peep	N91-phoB
DI 20	GTATGAACGTTAAAATTAAACTTAAT	For noon	NO1 nhoD
PL28	ATGCAATCCGATAAAAGTTCTAAAG	FOI peep	мят-риов
DI 20	GATATGTGTTATTTCATTTTCTTC	For noon	NO1 whoD
FL29	CTTGAATATATCAAATATTATTTTTGC	roi peep	N91-pilob
PL30	ACTGTTAAATTTGAACGTGATGG	For peep	T250-phoB
PL31	CGTCTTATTATCTTTAACTTTATC	For peep	T250-phoB
DI 27	GATAAAGTTAAAGATAATAAGACG	For near	T250 phoP
r LJZ	ATGCAATCCGATAAAAGTTCTAAAG	For peep	1230-phob
DI 33	CCATCACGTTCAAATTTAACAGT	For neen	T250 phoB
r L33	CTTGAATATATCAAATATTATTTTTGC	For peep	1230-phob
PL34	ATTTATCATAACGTCGACTCAG	For peep	G339-phoB
PL35	ACCAACCGGACCATTTAACATATC	For peep	G339-phoB
DI 36	GATATGTTAAATGGTCCGGTTGGT	For neen	G339-phoB
1 L30	ATGCAATCCGATAAAAGTTCTAAAG	roi peep	
DI 37	CTGAGTCGACGTTATGATAAAT	For near	G330-phoB
1 L37	CTTGAATATATCAAATATTATTTTTGC	roi peep	Coor-pilob
PL38	GAAGCGATTTTCAGAAAACCAG	For peep	Y387-phoB
PL39	ATATAAAAAATAAAATACGAC	For peep	Y387-phoB
PI 40	GTCGTATTTTATTTGTTATATAT	For near V207 phot	V387-phoB
1 L40	ATGCAATCCGATAAAAGTTCTAAAG	roi peep	1 387 - pilob
DI /1	CTGGTTTTCTGAAAATCGCTTC	For neen	V387-phoB
1 L 4 1	CTTGAATATATCAAATATTATTTTTGC	roi peep	1 507-pilob
PL42	ATTCGACGATATTTCTTACATC	For peep	D422-phoB
PL43	ATCATTCCACGTTACTAATATC	For peep	D422-phoB
PI 44	GATATTAGTAACGTGGAATGAT	For neen	D422-nhoB
1 1/44	ATGCAATCCGATAAAAGTTCTAAAG	TOT peep	D422-phob
PI 45	GATGTAAGAAATATCGTCGAAT	For neen	D422-nhoB
rl43	CTTGAATATATCAAATATTATTTTTGC	TOT peep	D422-phob
PL428	GAGCCCGGGCCCAAACCTGGTCAATCAATGGCG	For SpsB	-his expression
DI 170	GCCGTCGACctaatgtgatgatgatgtgATTTTTAGTATTTTCAGG	For SneB	-his expression
rl429	ATTGAAATTATG	TOT SPSD	ms expression
PL351	GAGCCCGGG ATGAAGCGTACATTAGTATTATTG	For Cam	S-his expression
PL352	GAGGGATCC cta atg atg atg atg atg atg ATTACTGTAA	For Cam	S-his expression
11334	ATATGAACTTGCGGTTC		, no expression
P221	GAG CCCGGG CGCAAGTGTGCTGT	For pspA	

P222	GAGGGATCCTTATAGTTCGCGACGACGTC	For pspA
PL501	GAGCCCGGG CTGATGACTTGAATACAATTTATAGG	For FnbA-his expression
PL502	GAGGGATCC ctaatgatgatgatgatgatg TGCTTTGTGATTCTT TTTATTTCTGCG	For FnbA-his expression
PL503	GAGCCCGGG GAAATTCAATGCTATTGAGTTGATGGG	For SasG-his expression
PL504	GAGGGATCC ctaatgatgatgatgatgatg AATCCGGATTAAATT TACGTTCTTTCTTG	For SasG-his expression
PL464	cgc GGTACC G ATGCCACATACTTTGTGGATGG	For TLR2 overexpression
PL465	CGC TCTAGA CTAGGACTTTATCGCAGCTCTCAG	For TLR2 overexpression
P41	CAGCAAACCATGCAGATGCTA	Real-time PCR for spA
P42	ACCGATGAATGGATTTTCTTCAC	Real-time PCR for spA
PL152	CAACCATTGCGATTTCTTTACC	Real-time PCR for saeP
PL153	TTAGCTTTAGGTGCTTGTGG	Real-time PCR for saeP
P43	CAAATGATCACAGCATTTGGTACAG	Real-time PCR for gyrB
P44	CGGCATCAGTCATAATGACGAT	Real-time PCR for gyrB

REFERENCES

- Kreiswirth BN, Lofdahl S, Betley MJ, O'Reilly M, Schlievert PM, Bergdoll MS, Novick RP. 1983. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305:709-712.
- Jeong DW, Cho H, Lee H, Li C, Garza J, Fried M, Bae T. 2011. Identification of the P3 promoter and distinct roles of the two promoters of the SaeRS two-component system in *Staphylococcus aureus*. J Bacteriol 193:4672-4684.
- Liu Q, Cho H, Yeo WS, Bae T. 2015. The extracytoplasmic linker peptide of the sensor protein SaeS tunes the kinase activity required for staphylococcal virulence in response to host signals. PLoS Pathog 11:e1004799.
- 4. Bae T, Schneewind O. 2006. Allelic replacement in *Staphylococcus aureus* with inducible counter-selection. Plasmid 55:58-63.
- Monk IR, Tree JJ, Howden BP, Stinear TP, Foster TJ. 2015. Complete Bypass of Restriction Systems for Major *Staphylococcus aureus* Lineages. MBio

6:e00308-15.

- 6. Lee CY, Buranen SL, Ye ZH. 1991. Construction of single-copy integration vectors for *Staphylococcus aureus*. Gene 103:101-105.
- Wang Y, Hu M, Liu Q, Qin J, Dai Y, He L, Li T, Zheng B, Zhou F, Yu K, Fang J, Liu X, Otto M, Li M. 2016. Role of the ESAT-6 secretion system in virulence of the emerging community-associated *Staphylococcus aureus* lineage ST398. Sci Rep 6:25163.