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S1. Evaluation metrics

Several different evaluation metrics, including Pearson correlation coefficient
(R), root mean squared error (RMSE), mean absolute error (MAE), and
Tanimoto coefficient (S4 ) [1], are used to evaluate the performances of
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Table S1. Essential introduction of four fingerprints.

fingerprint

Description

Number of
features

Daylight

A path-based fingerprint contains 2048 bits and
encodes all connectivity pathways in a given
length through a molecule (Reference [71] in
main text)

2048

MACCS

A substructure keys-based fingerprint with 166
structural keys based on SMARTS patterns
(Reference [72] in main text)

166

Estate 1

A topological fingerprint based on electro-
topological state indices, encoding the intrin-
sic electronic state of the atom as perturbed by
the electronic influence of all other atoms in the
molecule within the context of the topological
character of the molecule. It means the number
of times that each atom type is hit (Reference
[73] in main text)

79

Estate 2

Similar to Estate 1, and it contains the sum of
the estate indices for atoms of each type (Ref-
erence [73] in main text)

79

different models. These metrics are defined as follows:
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where X; and X; stand for the predicted value and the experimented

value for the 7th molecule, respectively, logX and log X are the average
logarithm values of predicted and experimented result, respectively, N is
the total number of molecules in the test set, and x;4 (z;5) denotes the ith
feature of molecule A (B).

Here R measures the linear relationship between experimental and pre-
dicted values of the test set, RMSE reflects the accuracy of the prediction.
MAE is a measure of an average of the absolute difference between experi-
mental and predicted results. The larger R, the smaller RMSE, or the smaller
MAE, the more accurate is the prediction. Additionally, S4 5 € [0, 1] is used
in the present work to calculate the degree of similarity between two molecule
structures. A large average value of Sy p between two datasets means there
is a high similarity between them.

S2. Datasets of toxicity prediction

The understanding of toxicity is very important to human health and en-
vironmental protection. Four quantitative toxicity datasets are used in the
present work as follows. 1) LDjsy (oral rat LD50) is used to measure the
amount of chemicals that can kill half of the rats when orally ingested. 2)
IGCjs (40h Tetrahymena pyriformis IGCsg) records 50% growth inhibitory
concentration of Tetrahymena pyriformis organism after 40h. 3) LCso (96h
fathead minnow LCpg) reports at the concentration of test chemicals in
the water in milligrams per liter that results in 50% of fathead minnows
to die after 96h. Finally, 4) LCs-DM (48h Daphnia magna LCsy) de-
notes the concentration of test chemicals in the water in milligrams per
liter that cause 50% Daphnia magna to die after 48h. The unit of toxic-
ity reported in these four datasets is -logl0 mol/L. All of these datasets are
available from recent publications or public database [2, 3, 4]. The web site
of database is https://www.epa.gov/chemical-research/toxicity-estimation-
software-tool-test. Note that the size of these four datasets varies over a
large range from 353 to 7413, which is a challenge for a model to keep the ro-
bust and consistent accuracy. We focus on the performance of the relatively
small dataset, like LC50-DM with a total size of 353 samples. The statistics
of four datasets is given in Table S2.



Table S2. The summary of four datasets used in toxicity prediction.

Dataset Total size Train size Test size Max value Min value
LDs5g 7413 5931 1482 7.201 0.291
1GCs 1792 1434 358 6.360 0.334
LCsxg 823 659 164 9.261 0.037

LC5o-DM 353 283 70 10.064 0.117

Table S3. The hyper-parameters in GBDT models for four datasets in toxi-
city prediction.

Dataset n_estimators max_depth min_sample_split learning_rate subsample max_feature

LDsg 2000 7 3 0.01 0.3 sqrt
IGCso 10000 7 3 0.01 0.3 sqrt
LCso 2000 9 3 0.01 0.1 sqrt
LCso-DM 2000 9 3 0.01 0.1 sqrt

S3. Partition coefficient (logP) and solvation
free energy

The partition coefficient (P) is defined as the ratio of concentrations of a
solute in the mixture of two immiscible solvents at equilibrium and is a very
important quantity in pharmacology. The logarithm of this coefficient, logP,
is one of the key parameters in drug design and discovery. Optimal logP with
low molecular weight and low polar surface area play an important role in
governing the kinetic and dynamic aspects of drug action [5]. The training set
used for partition coefficient predictions was originally compiled by Cheng et
al. [6], and in present work, it has 8199 compounds based on Hansch et al.’s
compilation [7]. Additionally, the test set in our test contains 406 molecules
and is named as FDA (Food and Drug Administration) [6].

Another dataset related to the drug discovery problem is the solvation free
energy, which is collected by Wang et al. in present work for the purpose of
testing their method named weighted solvent accessible surface area (WSAS)
8]. In this set, the total number of neutral molecules in the 2D SDF format
is 383, which is divided into a training set and a test set having 289 and 94
molecules, respectively. Furthermore, the 3D Mol2 molecular structures are
all generated by Schrodinger software except 11 molecules that are generated
by Discovery Studio software and their IDs are 980, 69689, 95961, 6736, 1390,



6587, 7903, 12302, 7416, 6944, 7422, 11705, and 398. The summary of logP
and solvation datasets is given in Table S4. To analyze these datasets, Estate
2, Estate 1, and MACCS fingerprints are used for comparison.

Table S4. The summary of logP and solvation datasets.

Training set Test set Max value Min value
logP 8199 406 7.57 -3.1
solvation 289 94 4.28 -11.96

S3.1 The performance of GBDT

The details of hyper-parameters used in the GBDT model are shown in Table
S5. The performance of GBDT for two datasets with three different finger-
prints is presented in Table S6. The current findings are the follows. 1) For
the logP dataset, with a large size 8199, fingerprint Estate 2 achieves the
best accuracy 0.893 for R?. After the process of consensus, the accuracy can
be improved to 0.897 for R2. 2) For the solvation dataset, with a small size
289, MACCS fingerprint gives rise to the best performance with R? = 0.954,
and the result of consensus is 0.921 for R?, which is better than that of logP
dataset.

Table S5. The hyper-parameters in GBDT models for logP, logS and solva-
tion datasets.

Dataset n_estimators max_depth min_sample_split learning_rate subsample max_feature

logP 20000 7 3 0.01 0.3 sqrt
logS 10000 7 3 0.01 0.3 sqrt
solvation 2000 9 3 0.01 0.1 sqrt

S3.2 The performance of multitask deep learning

To explore the effect of a large dataset, like logP, on the performance of a
small dataset, like solvation, we put two datasets simultaneously as the input
vector in the multitask deep learning model. The hyper-parameters for MDL
are set as following: 1) the number of hidden layers is 7; 2) the number of
neurons is 1000 for the first 4 hidden layers, and 100 for the next 3 hidden



Table S6. Comparison of prediction results R?, MAE and RMSE of GBDT
model for logP and solvation datasets with Estate 2, Estate 1, MACCS fin-
gerprints and the consensus.

logP solvation
R? MAE RMSE R? MAE RMSE
Estate 2 0.893 0.331 0.649 0.882 0.697 1.015
Estate 1 0.870 0.381 0.701 0.881 0.677 1.019
MACCS 0.867 0.380 0.717 0.954 0.500 0.676
consensus 0.897 0.339 0.640 0.921 0.563 0.818

layers; 3) the number of epochs is 1000; 4) learning rate is 0.001 for the first
500 epochs and is 0.0001 for the rest of 500 epochs; 5) batch-size is 16; and
6) the optimizer is SGD (stochastic gradient descent) with the momentum
value of 0.5.

Compared to the results of GBDT, we present the performance of MDL
with logP and solvation datasets in Table S7, which suggests that with the
help of large dataset logP, the accuracies of R? with Estate 2 and Estate 1 fin-
gerprints of solvation are boosted by 0.9% and 3.2%, respectively. However,
the accuracy of R* with MACCS fingerprint decreases by 5.6%. Through
the method of consensus, the performance of solvation is improved by 0.2%,
which is almost the same as that in Table S6. Opposite to the increase of
accuracy of solvation dataset, for the large dataset, logP, except in the case
of MACCS fingerprint, all accuracies of prediction with Estate 2 and Estate
1 fingerprints and the consensus method decrease by 4.4%, 1.1%, and 0.8%,
respectively. Therefore, in this two-task deep learning of logP and solvation,
the task with a small dataset does not benefit too much from the task with

a large dataset. This can be explained from the similarity analysis given in
Table S18.

S3.3 The performance of two BTAMDL models

As the number of neuron in the last hidden layer of the neural network in
BTAMDL model is 100, the feature number of training data for GBDT in
BTAMDL 1 is the same as 100. The details of hyper-parameters used in
BTAMDL 1 for logP and solvation are in Table S8 and S9, respectively.
The performance of BTAMDL 1 is shown in Table S10. Through the



Table S7. Comparison of prediction results 2, MAE and RMSE of MDL for
logP and solvation datasets with Estate 2, Estate 1 and MACCS fingerprints,
and consensus method.

logP solvation
R? MAE RMSE R? MAE RMSE
Estate 2 0.854 0.452 0.782 0.890 0.589 0.981
Estate 1 0.860 0.401 0.751  0.909 0.592 0.902
MACCS 0.884 0.364 0.678 0.901 0.639 0.956
consensus 0.890 0.351 0.666 0.923 0.516 0.829

Table S8. The hyper-parameters in BTAMDL 1 for logP dataset.

Dataset n_estimators max_depth min_sample_split learning_rate subsample max_feature
logP 10000 4 3 0.01 0.2 sqrt

Table S9. The hyper-parameters in BTAMDL 1 for solvation dataset.

Dataset  fingerprint n_esti- max_- min_sam- learning - subsample max_-
mators depth ple_split  rate feature
Estate 2 2000 9 3 0.01 0.1 sqrt
solvation Estate 1 3000 2 7 0.004 0.2 sqrt
MACCS 3600 2 5 0.003 0.2 sqrt

comparison between Table S10 and Table S7, we find that the accuracies R>
of the consensus method are improved a little by 0.1% and 0.3% for logP
and solvation datasets, respectively, which suggests that the algorithm of
BTAMDL 1 can indeed further enhance the accuracy of prediction result of
small and big datasets.

Next, we try to use BTAMDL 2 to further improve the performance of
prediction, in which the feature number of inputs for GBDT is equal to the
feature number of fingerprint plus that of activated outputs from MDL. So,
the number of the new features in training data is increased from 79 to 179
for Estate 2 and Estate 1, and from 166 to 266 for MACCS, respectively.
Table S11 gives the prediction results for logP and solvation datasets. It is
demonstrated that with a comparison with BTAMDL 1 in Table S10, for
logP, the accuracies R? for three fingerprints are decreased except the case
with Estate 1, which results in a slight decrease 0.1% of accuracy with the
method of consensus. However, for solvation, there is a slight increase of 0.5%



Table S10. Comparison of prediction results R?, MAE and RMSE with
BTAMDL 1 for logP and solvation datasets with Estate 2, Estate 1, and
MACCS fingerprints and consensus method.

logP solvation
R? MAE RMSE R? MAE RMSE
Estate 2 0.855 0.449 0.779 0.894 0.616 1.002
Estate 1 0.858 0.402 0.757 0.913 0.582 0.886
MACCS 0.889 0.357 0.670 0.900 0.639 0.960
consensus 0.891 0.354 0.665 0.926 0.513 0.824

of accuracy with the method of consensus. Therefore, from these results,
we can confirm that BTAMDL 2 may not further enhance the accuracy of
prediction. This is due to the redundant features as analyzed below.

Table S11. Comparison of prediction results with BTAMDL 2 for logP and
solvation datasets with three fingerprints and the consensus method.

logP solvation
R?> MAE RMSE R? MAE RMSE
Estate 2 0.851 0.471 0.792 0.894 0.602 0.964
Estate 1 0.859 0.416 0.757 0.913 0.580 0.880
MACCS 0.881 0.392 0.694 0.904 0.638 0.937
consensus 0.889 0.361 0.669 0.928 0.514 0.808

Figure S1 shows the relationship between the number of features and the
prediction accuracy based on the importance order of the feature for logP
and solvation datasets. In Figure S1 (a), for logP dataset with fingerprints
Estate 2 and Estate 1, the value of R? increases quickly as the number of
features increases. The maximal value is reached with 11 features (see inset),
which is just 6.1% of the total of 179 features. For MACCS, there is little
fluctuation in R? with the increase of the number of features, compared to
that of the other two fingerprints. The maximum value of R? is reached with
around 21 features (see inset), which is just 7.9% of the total 266 features.
These results suggest that most of the features in the above training data
are redundant, which gives the reason why the performance of BTAMDL 2
is not improved in Table S11. In Figure S1 (b), for solvation dataset, similar
behavior of the accuracy R? with the number of features is found, that is,



the value of R? sharply increases at a small number of features. Additionally,
a small number of features is needed for R? to become steady, compared to
the logP dataset in Figure S1 (a). They are only 2.8% and 1.7% of the total
features for Estate 1 and Estate 2, respectively (see inset). In particular, for
MACCS, even one feature could make the model robust and accurate (see
inset). Hence, in this case, redundant features do not enhance the accuracy
of the model but make the model time-consuming.
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Figure S1. Tendency of the prediction accuracy R? along with number of
features for three different fingerprints, MACCS, Estate 1, and Estate 2 of
logP and solvation datasets.

S3.4 Comparison with other methods

A detailed comparison with other logP prediction methods is shown in Ta-
ble S12, where the methods of GBDT-ESTD'-2-AD and MT-ESTD-1 are
based on 3D descriptors [5]. Since GBDT-ESTD*-2-AD model contains some
molecules from the NIH dataset in its training set, its performance is better
than those of our models. As pointed out in the literature [9], ALOGPS
has a similar problem: its training set includes all of the compounds in the
FDA test set for the PHYSPROP database [10]. Therefore, compared with
methods with a clear separation between the training set and test set, the
present methods performed the best.



Table S12. Comparison of logP predictions between our models (green part)
with other different methods (pink part) on the FDA test set.

Method R?
GBDT-ESTD™-2-AD (2D+3D) [5] 0.935
MT-ESTD-1 [5] 0.920
ALOGPS (2D) [6] 0.908
GBDT consensus 0.897
BTAMDL 1 0.891
MDL consensus 0.890
BTAMDL 2 0.889
XLOGP3 (2D) [6] 0.872
XLOGP3-AA (2D) [6] 0.847
CLOGP (2D) [6] 0.838
TOPKAT (2D) [6] 0.815
ALOGP98 (2D) [6] 0.800
KowWIN (2D) [6] 0.771
HINT (2D) [6] 0.491

S4. Aqueous solubility (logS) and Solvation

In this section, we use aqueous solubility (logS) dataset, instead of logP
dataset, as one of the test data in the prediction, aiming at finding out the
influence of different data size on the improvement of the performance of
small dataset. Like the case, we also want to identify the reason behind this
improvement, if possible.

In drug discovery and other pharmaceutical fields, aqueous solubility, de-
noted by its logarithm value logS, is very important for excluding molecules
with undesirable water solubility on early stages since the solubility greatly
influences many processes, namely, absorption, distribution, metabolism,
and elimination [11, 12]. There are several well-defined aqueous solubility
datasets used in prediction models [13]. In the present work, we test our
models on a relatively small dataset where has 1290 samples in the train set
[14] and 21 samples in the test set [9]. The summary of logS and solvation
datasets is given in Table S13. In these datasets test, the Estate 2, Estate 1,
and MACCS fingerprints are used for comparison.
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Table S13. The summary of logS and solvation datasets used.

Training set Test set Max value Min value
logS 1290 21 0.39 -8.08
solvation 289 94 4.28 -11.96

S4.1 The performance of GBDT

The details of the hyper-parameters used in the GBDT model are shown in
Table S5. The performance of GBDT for two datasets with three different
fingerprints is presented in Table S14. It is seen that: 1) for the logS dataset,
with a size of 1290, MACCS fingerprint can achieve the accuracy 0.896 for R?.
However, the consensus accuracy is 0.886; 2) for the solvation dataset, with a
size of 289, MACCS fingerprint obtains the best performance of R? = 0.954,
and the result of consensus is 0.921 for R?, which is better than that of logS
dataset.

Table S14. Comparison of prediction results R?, MAE and RMSE of GBDT
model for logS and solvation datasets with Estate 2, Estate 1, MACCS fin-
gerprints and the method of consensus.

logS solvation
R? MAE RMSE R? MAE RMSE
Estate 2 0.804 0.646 0.900 0.882 0.697 1.015
Estate 1 0.870 0.550 0.792 0.881 0.677 1.019
MACCS 0.896 0.608 0.710 0.954 0.500 0.676
consensus 0.886 0.570 0.732 0.921 0.563 0.818

S4.2 The performance of multitask deep learning

To improve the performance of small dataset, solvation, a two-task MDL
model with logS and solvation datasets is constructed. As the size of logS
dataset is smaller than that of logP dataset, some parameters in neural net-
works are changed as follows: 1) one hidden layer; 2) the number of neurons
in hidden layer is 900; 3) number of epoch is 1900; 4) learning rate is 0.001;
5) batch-size is 2; 6) the optimizer is SGD (stochastic gradient descent) with
a momentum value of 0.2. We show the performance of the prediction of
the MDL model in Table S15. It is seen that for the small set, solvation, all
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values of R? are improved in three fingerprints and the consensus method,
by 5.7%, 7.0%, 0.6%, and 4.6%, respectively, compared to those with GBDT
model in Table S14. For the large set, logS, though all values of R? with
three fingerprints are dropped. However, the R? of the consensus method
increases 0.6% and is also better than that in Table S14. Therefore, with
MDL, logS and solvation predictions are benefited mutually. The prediction
with a small data size can be significantly improved by a large data size.

Table S15. Comparison of prediction results R?, MAE and RMSE of MDL
for logS and solvation datasets with Estate 2, Estate 1, MACCS fingerprints
and consensus method.

logS solvation
R? MAE RMSE R? MAE RMSE
Estate 2 0.713 0971 1.167 0.932 0.517 0.774
Estate 1  0.845 0.643 0.847 0.943 0.460 0.713
MACCS 0.839 0.616 0.817 0.960 0.434 0.604
consensus 0.891 0.590 0.723 0.963 0.407 0.569

S4.3 Comparison with other methods

Table S16 presents a comparison between our models and other methods on
the logS dataset. Our models outperform all other state-of-the-art 2D and 3D
methods. In Table S17, the comparison is given between different methods
on the solvation dataset. Our models outperform all other methods. Note

that FFT [15] and WSAS [2] did not give R? results.

Table S16. Comparison of logS predictions between our models (green part)
with other different methods (pink part).

Method R?
MDL consensus 0.891
GBDT consensus 0.886
MT-ESTD*-1 (3D) [5] 0.884
Drug-LOGS (2D) [9] 0.884
Klopman MLR (2D) [14] 0.846
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Table S17. Comparison of solvation predictions between our models (green
part) with other different methods (pink part). Reference [36] is in main
text.

Method R?> MAE

MDL consensus 0.963 0.407
GBDT consensus 0.921 0.563
EICL S 030515 [36] 0.920 0.558
Consensous™ [36] ~ 0.920 0.567

FFT [15] NA  0.570
EICE ;505 [36] 0.904 0.575
EIC, |, [36] 0.906 0.592

EICLH,§{1.3;L,6.5,O.3 [36] 0.907 0.608

WSAS [2] NA  0.660

S4.4 The similarity analysis between datasets

From the prediction results of MDL in subsection S3.2 and S4.2, it is seen that
the transfer learning enhancement of a small dataset from a larger dataset
is not always proportional to the size of the larger dataset. The logP data
(8199) is much larger than that of logS data (1290). But solvation prediction
R? is enhanced more from the logS dataset than from the logP dataset. This
behavior can be understood from the similarity analysis. As shown in Table
S18, the similarity between logP and solvation datasets averaged over three
different fingerprints is 0.609, while that between logS and solvation datasets
is 0.645. This similarity analysis explains why in the transfer learning, the
logS dataset can provide more enhancement to the solvation prediction than
the logP dataset. Therefore, one can conclude that the similarity between the
datasets in multitask learning is essential to the smaller dataset’s prediction
improvement.
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