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This document contains:

I Two supplementary figures that describe: Supplementary Figure 1: the charging time constant of the head
capacitor as function of dendritic spine geometry, and Supplementary Figure 2: the steady-state synaptic current,
head voltage and ion concentration for increased synaptic conductance.

II Details of computations leading to main equations of the manuscript.

I. SUPPLEMENTARY FIGURES

FIG. S1: Charge kinetics of spine head capacitor The charging time constant of head capacitor is plotted as
function of spine head size and ion concentration for constant neck length L = 1 µm and different neck radii (small (30

nm), medium (50 nm) and large (100 nm)).

FIG. S2: Steady-state analysis for sustained synaptic current. For increasing synaptic conductance and different
neck geometries (constant length L = 1 µm, thin (80 nm, grey) or large (140 nm, red) diameter), we computed the
steady state synaptic current, head concentration and potential when a sustained current of positive ions is injected
inside the spine head, i.e. when the conductance does not change over time (see detailed analysis in section II-C-2).
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II. SUPPLEMENTARY METHODS: DETAILS OF MATHEMATICAL DERIVATIONS

A. Electrostatics within the spine head

We modeled the geometry of the spine head with a ball of radius R (see Fig. 1a in main text), and considered that the
cell membrane is homogeneous and thin bilayer with a thickness equal to d � R and a relative permittivity εm that is
much smaller than cytoplasmic permittivity εm � εc (see Table 1 in main text). Inside the cytoplasm, i.e. apart of the
membrane bilayer, Poisson equation reads

∆rΦ(r, t) =
e

ε0εc

(
c−(r, t)− c+(r, t)

)
(1)

with ∆r the Laplacian operator with respect to the radial coordinate r ≥ 0, Φ the electrical potential and c+, c− the
concentrations of positive and negative charges. e, the elementary charge, ε0 the vacuum permittivity and εc, the relative
permittivity of the cytoplasm, are constants (see Table 1 in main text). Origin r = 0 corresponds to the center of the
spine head ball, r = R to the interior membrane and r = R + d to the exterior membrane of spine head. Nernst-Planck
equations reads

∂cv(r, t)

∂t
= D∇r.

(
∇rcv(r, t) +

ve

kBT
cv(r, t)∇rΦ(r, t)

)
(2)

where v = ±1 is the ion valence, ∇r the gradient operator, kB the Boltzmann constant and T the temperature. We
assumed that the diffusion coefficient D is the same for positive and negative ions (see Table 1 in the main text).
To derive asymptotical expressions for the electrical potential and ion concentration inside the spine head, we developed
singular perturbation analysis of PNP equations (1 and 2) which consists of three main steps (for a detailed overview of
singular perturbation methods in electro-diffusion problems, see Part 3 A primer on Singular Perturbation Theory in [1]):

1. Rewrite PNP equations in dimensionless variables and make appear a very small pre-factor on one hand of equations
allowing their asymptotical analysis

2. Compute an approximate solution far from the domain boundaries called outer solution by letting the small param-
eter tend to 0. Usually, Outer solution does not satisfy the boundary conditions.

3. Compute the local inner solution inside the boundary layer that satisfies boundary conditions and match inner and
outer solutions at some intermediate distance from the boundary layer.

Step 1: Rewriting the PNP system of equations in a dimensionless system of variables.
Let denote

u =
r

R
, φ(u, t) =

e

kBT
Φ(r, t) = γΦ(r, t), p(u, t) =

c+(r, t)

c0
, n(u, t) =

c−(r, t)

c0
, (3)

and Poisson equation then reduced to

δ1∆uφ(u, t) = n(u, t)− p(u, t), (4)

where ∆u is the Laplace operator in dimensionless variable u and

δ1 =
ε0εc

eγc0R2
= 2

(
λD
R

)2

� 1, (5)

where λD =
√

ε0εc
2eγc0

is the Debye length.

Step 2: Asymptotic computation of outer solution inside the bulk (i.e. except for the thin boundary layer
near the membrane and the neck junction
As δ1 � 1, singular perturbation analysis allowed the expansion of potential and concentrations as

φ(u, t) = φ0(u, t) + δ1φ1(u, t) + o
(
δ21
)
, p(u, t) = p0(u, t) + δ1p1(u, t) + o

(
δ21
)

and n(u, t) = n0(u, t) + δ1n1(u, t) + o
(
δ21
)
.

Letting δ1 tend to 0 in reduced Poisson equation (4), we obtained that the bulk inside spine head, except for the boundary
layer near the membrane, was electro-neutral

p0(u, t) = n0(u, t), (6)
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On the other hand, reduced Nernst-Planck equations read

∂p(u, t)

∂t
=

D

R2
∇u (∇up(u, t) + p(u, t)∇uφ(u, t)) ,

∂n(u, t)

∂t
=

D

R2
∇u (∇un(u, t)− n(u, t)∇uφ(u, t)) , (7)

Addition of reduced NP equations, together with asymptotic electro-neutrality condition (6), led to

∂p0(u, t)

∂t
=

D

R2
∆up0(u, t). (8)

As D
R2 = O

(
105Hz

)
, ion concentration rapidly equilibrates and singular perturbation theory yields

∆up0(u, t) = O

(
R2

D

∥∥∥∥∂p0(u, t)

∂t

∥∥∥∥
∞

)
= o(1) (9)

where ‖.‖∞ is the infinity norm (i.e maximum of the time derivative) which is bounded. Because the spine neck diameter

is small compared to the size the spine head ε = a(0)
R � 1, Narrow escape theory ensured that we could approximate

p0(u, t) with the constant solution p0(t) of the harmonic equation (9) within a ball with no neck junction [2, 3].
On the other hand, substraction of reduced Nernst-Planck equations (7) with constant bulk concentration led to

Dp0(t)

R2
∆uφ0(u, t) = O

(
δ1

∥∥∥∥∂p1(u, t)

∂t

∥∥∥∥
∞

)
. (10)

Thus,

∆uφ0(u, t) = O

(
λ2D
D
p−10 (t)

∥∥∥∥∂p1(u, t)

∂t

∥∥∥∥
∞

)
= o(1) (11)

meaning that potential is nearly harmonic inside the spine head. For ε = a(0)
R � 1, we neglected the effects of neck junction

at the center of the spine head, and assumed the symmetric condition
[
∂φ0(u,t)
∂u

]
u=0

= 0. The solution of equation (11) is

then constant within the bulk

φ0(u, t) = φ0(t) (1 + o(1)) . (12)

To obtain the full solutions for the potential and the ions’ concentrations, we then computed the inner solutions within
the boundary layers near the membrane that match the boundary conditions, that are the no-flux condition for ions and
the continuity of the electrical field for the potential.
Step3: Computation of inner solutions of PNP equations near the membrane (i.e within the boundary
layer)
Denoting n the membrane outward normal vector, continuity of the electrical field at both sides of the spine membrane
imposes that

∂Φ

∂n
(r = R) =

∂Φ

∂n
(r = R+ d). (13)

Considering that the cell membrane is homogeneous and thin, we approximated the variation of the electric field across
the membrane with a linear function [4]

εc
∂Φ

∂n
(r = R) = εm

Φ(r = R+ d)− Φ(r = R)

d
, (14)

where εm � εc is the relative permittivity of the membrane bilayer (see Table 1 in main text). The electro-neutrality of
the bulk inside and outside the spine head derives from the singular expansion of the potential solution (6), and imposes
that

∂Φ

∂n
(r →∞) = 0. (15)

Finally, we set the external potential far from the membrane to 0 (i.e. Φ(r →∞) = 0).
Charging time of the Debye-Hückle boundary layer is of the order of RλD

D ≈ 10−6 seconds. We thus assumed that
ion concentrations are quasi-static inside the boundary layer (i.e. equilibrate fast compared to the other time scales of
electro-diffusion processes), and are governed by Boltzmann equilibrium distribution inside the spine head

c+(r, t) = chead(t) exp

(
e

kBT
(Φ(r, t)− Φhead(t))

)
and c−(r, t) = chead(t) exp

(
−e
kBT

(Φ(r, t)− Φhead(t))

)
(16)
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with chead(t) and Φhead(t) the bulk concentration and potential inside the spine head, and outside the spine head

c+(r, t) = c0 exp

(
e

kBT
(Φ(r, t))

)
and c−(r, t) = c0 exp

(
−e
kBT

(Φ(r, t))

)
(17)

with c0 the bulk ion concentration in the extracellular medium, that we assumed to be equal to the resting ion concentration
inside the dendritic spine (see Table 1 in main manuscript). Inside the boundary layer, we approximate the Laplacian
operator ∆r ≈ ∂

∂r2 , and re-introducing Boltzmann profiles of ion concentrations in the Poisson equation (1), we found
that potential is solution of the one-dimensional Poisson-Boltzmann equation

∂Φ(r, t)

∂r2
=
echead(t)

ε0εc

(
exp

(
−e
kBT

(Φ(r, t)− Φhead(t))

)
− exp

(
e

kBT
(Φ(r, t)− Φhead(t))

))
(18)

inside the spine head, and

∂Φ(r, t)

∂r2
=

ec0
ε0εc

(
exp

(
−e
kBT

(Φ(r, t))

)
− exp

(
e

kBT
(Φ(r, t))

))
(19)

outside the spine head. Given that the relative permittivity of membrane bilayer is much smaller than the relative
permittivity of the cytoplasm εm � εc, most of the voltage drop occurs through the membrane rather than inside the
Debye-Hückel boundary layer, meaning that Φ(r, t) = Φhead(t) + o(Φhead(t)) for all 0 ≤ r ≤ R inside the spine head,
and Φ(r, t) ≈ 0 mV for r ≥ R + d outside the spine head. We thus linearized previous Poisson-Boltzmann equation and
obtained the well-established exponential profile of potential

Φ(r, t) = Φhead(t) + (Φ(R, t)− Φhead(t)) exp

(
−R− r

λD

√
c0

chead(t)

)
, (20)

inside the spine head, and

Φ(r, t) = Φ(R+ d, t) exp

(
−r −R− d

λD

)
, (21)

outside the spine head.
Finally, we computed the value of the potential at membrane boundary, Φ(R, t) and Φ(R + d, t), by using the continuity
of the electric field at the membrane (Eq. 13)

Φ(R, t) +

√
chead(t)

c0
Φ(R+ d, t) = Φhead(t). (22)

and linear approximation (14) together with exponential profile (20)

(Φ(R, t)− Φhead(t)) =

√
chead(t)

c0

λdεm
dεc

(Φ(R+ d)− Φ(R)) . (23)

Solving previous linear system of equations, and using Taylor expansions of solutions for λdεm
dεc
� 1 led to

Φ(R, t) =

1−

√
chead(t)

c0

εmλD
εcd

Φhead(t), (24)

and

Φ(R+ d, t) =
εmλD
εcd

Φhead(t). (25)

Finally, by summing inner (i.e. inside the Debye-Hückle boundary layer near the membrane) and outer solutions (i.e.
inside the bulk cytoplasm), we obtained that potential inside the spine head is given by

Φ(r, t) ≈ Φhead(t)

1−

√
chead(t)

c0

εmλD
εcd

exp

(
−R− r

λD

√
c0

chead(t)

) for 0 ≤ r ≤ R (26)

and outside the spine head, we computed that

Φ(r, t) ≈ εmλD
εcd

Φhead(t) exp

(
−r −R− d

λD

)
for r ≥ R+ d. (27)
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Finally, to relate the potential Φhead(t) to the total number of charges inside the spine head, we integrated the Poisson
equation over the spine interior volume, and used Green’s first identity

sh
∂Φ(R, t)

∂r
= − e

ε0εc

(
n+(t)− n−(t)

)
, (28)

where n+(t) and n+(t) are the total number of charges inside the spine head at time t and sh = 4πR2 the surface of the
spine head membrane. Using equation (26) for the interior solution of potential, we computed that

∂Φ(R, t)

∂r
= −Φhead(t)

εm
εcd

, (29)

and we obtained that

Φhead(t) =
ed

ε0εmsh

(
n+(t)− n−(t)

)
=
e (n+(t)− n−(t))

cmsh
, (30)

where cm = ε0εm
d = O

(
10−2F.m−2

)
is membrane capacitance per unit of surface. Eq. (30) indicates that spine head

behaves like an ideal capacitor with capacitance Chead = cmsh.
Overall, our results indicate that (i) Bulk is electro-neutral, (ii) Electrical potential is constant except for the boundary
layer near the membrane where it increases (iii) Main potential drop occurs across the membrane bilayer due to its low
permittivity εm � εc, and (iv) Potential within the spine head is proportional to the absolute number of excess negative
charges in excess. The spine head behaves like a pure capacitor with capacitance Chead = cmsh.

B. Asymptotic analysis of ions’ fluxes (current and diffusion) inside the spine neck

In this section, we reduced the PNP equations inside the neck to one-dimensional equations along neck’s principal axis.
Then, we computed the asymptotic current and diffusion flux between the spine head ans the parent dendrite.

1. One-dimension reduction of PNP equations inside the spine neck

The bulk concentration of ions yields a Debye length of λD ≈ 1nm, which is much smaller than neck radius in most spines
[5]. Moreover, spine length is typically an order of magnitude bigger than neck radius [5]. These two results justify well
the one-dimensional approximation of PNP equations where each cross section S(l) is approximated as an iso-potential
and iso-concentration surface [1]. Following the methodology used in [6, 7], we derived hereafter the one-dimensional
approximation of PNP equations in spine neck.
The 1D approximation relies on applying the divergence theorem on small cylindrical volumes around the position 0 ≤ l ≤ L
inside the spine neck, delimited longitudinally by cross-sections S(l − dl) and S(l + dl) and laterally by the membrane
m(l). In a first approximation, we considered that each cross-section is a disc of radius a(l) (i.e. S(l) = πa2(l)), and
that ion concentrations c+(l, t) and c−(l, t) are constant within the disc. We neglected here the effects of negative surface
charge at neck membrane. Effect of negative surface charge on I-V relation, known as current rectification, appears when
surface charge density or radius of the spine neck vary (Eq. (28) in [6]). However, in the physiological and geometrical
conditions of spine electro-physiology, current rectification can be neglected. Indeed, even for an important surface charge
density σ = 1e nm−2, a potential difference Φhead(t) − Φ0 = 25 , and a 50 nm difference between the initial radius
of the spine a(0) = 50 nm and the final radius a(L) = 100 nm, the current rectification (inside the brackets of the
right-hand side of equation (28) [6]) would be very close to 1 (which corresponds to no rectification): Rectification =[
1− 1

12
σ
c0F

(
1

a(0) −
1

a(L)

)
γ (Φhead(t)− Φ0)

]
≈ 0.99. Moreover, we highlight that rectification is equal to 0 when surface

charge and neck’s cross-section are constant. Then, the integration of the Poisson equation over infinitesimal volume, and
the first Green’s identity led to[

S
∂Φ

∂l

]l+dl
l−dl

(t) + 2πa(l)dl
∂Φ

∂r
(a(l), t) = −dl e

ε0εc
S(l)

(
c+(l, t)− c−(l, t)

)
, (31)

and, after dividing by dl and letting dl→ 0, to

1

S(l)

∂

∂l

[
S
∂Φ

∂l

]
(l, t) +

2

a(l)

∂Φ

∂r
(a(l), t) = − e

ε0εc

(
c+(l, t)− c−(l, t)

)
. (32)

Using the gradient equation (14), and relations (26-27) inside the neck at position 0 ≤ l ≤ L, we found that

∂Φ

∂r
(a(l), t) =

εm
εcd

Φ(l, t), (33)
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and

1

S(l)

∂

∂l

[
S
∂Φ

∂l

]
(l, t) +

2εm
a(l)εcd

Φ(l, t) = − e

ε0εc

(
c+(l, t)− c−(l, t)

)
. (34)

Integration of Nernst-Planck equation and Green’s identity led to (no ions flux at the membrane)

∂c(l, t)

∂t
S(l)dl = D

[
S
(
∇c+

ve

kT
c∇Φ

)]l+dl
l

(t), (35)

where v = ±1 is ion valence. That is, after dividing by dl and letting dl→ 0

∂c(l, t)

∂t
=

D

S(l)

∂

∂l

[
S

(
∂c

∂l
+
ve

kT
c
∂Φ

∂l

)]
(l, t). (36)

2. Asymptotic analysis of PNP equations inside the neck

a. Computation of the diffusion fluxes of ions. To perform asymptotic analysis of PNP equations inside the neck, we
introduced the dimensionless variables

u =
l

L
, φ(u, t) = γΦ(l, t), s(u) =

S(l)

S(0)
, ã(u) =

a(l)

a(0)
, p(u, t) =

c+(l, t)

c0
, n(u, t) =

c−(l, t)

c0
. (37)

Reduced Poisson equation then reads

δ2

(
s−1(u)

∂

∂u

[
s
∂φ

∂u

]
(u, t) + c1ã

−1(u)φ(u, t)

)
= n(u, t)− p(u, t) (38)

where

δ2 =
ε0εc

eL2γc0
= 2

(
λD
L

)2

� 1 and c1 = 2
L2

da(0)

εm
εc
� δ−12 . (39)

On the other hand, reduced Nernst-Planck equations read

∂p(u, t)

∂t
= −s−1(u)

∂jp(u, t)

∂u
and

∂n(u, t)

∂t
= −s−1(u)

∂jn(u, t)

∂u
, (40)

with

De

L2

[
s

(
∂p

∂u
+ p

∂φ

∂u

)]
(u, t) = −jp(u, t) and

De

L2

[
s

(
∂n

∂u
− n∂φ

∂u

)]
(u, t) = −jn(u, t). (41)

Letting δ2 tend to 0 in Poisson equation, we obtained the electro-neutrality condition

p(u, t) = n(u, t) +O(δ2). (42)

The addition of reduced Nernst-Planck equations (40) leads to

∂p(u, t)

∂t
=

D

L2

[
s−1(u)

∂

∂u

[
s
∂p

∂u

]
(u, t) +O(δ2)

]
(43)

As D
L2 = O

(
103 Hz

)
, we conclude that ∂

∂u

[
s ∂p∂u

]
(u) = o(1), and spatial integration with respect to u leads to

p(u, t) = α(t)

∫ u

0

s−1(x)dx+ β(t) + o(1). (44)

where α(t), β(t) are time functions that do not depend on spatial coordinate u. Denoting chead(t) the ionic concentration
inside the spine head at time t, and assuming that the dendrite is an infinite reservoir with constant concentration c0,

boundary conditions are then given by p(0, t) = chead(t)
c0

and p(1, t) = 1, leading to β(t) = chead(t)
c0

and α(t) = c0−chead(t)

c0
∫ 1
0
s−1(u)du

leading to the concentration profile along the neck

p(u, t) =
c0
∫ u
0
s−1(x)dx+ chead(t)

∫ 1

u
s−1(x)dx

c0
∫ 1

0
s−1(u)du

+ o(1). (45)
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Using previous equation (45) for the concentration profile of ions through the neck, we can then compute diffusion fluxes

of charges inside the neck jneck(u, t) = jp(u, t) + jn(u, t) = − 2De
L2

[
s ∂p∂u

]
(u, t)

jneck(u, t) = jneck(t) =
2De

L2

(chead(t)− c0)

c0
∫ 1

0
s−1(u)du

, (46)

In original variables, the diffusive flux is equal to Jneck(l, t) = −2eDS(l)∂c(l,t)∂l . Thus, Jneck(l, t) = Jneck(t) =
Lc0S(0)jneck(t), i.e.

Jneck(t) =
2D (chead(t)− c0) e∫ L

0
S−1(l)dl

. (47)

b. Computation of the electrical current. Electrical current is the net difference between the fluxes of negative and
positive ions. Due to electro-neutrality, diffusion currents do not produce any electrical current. Net current is thus equal
to

ineck(u, t) = [jp − jn] (u, t) = −2
De

L2

[
sp
∂φ

∂u

]
(u, t). (48)

Substraction of reduced NP equations (40) yields

∂ineck(u, t)

∂u
=

[
∂jp(u, t)

∂u
− ∂jn(u, t)

∂u

]
=
∂ [n− p] (u, t)

∂t
= O(δ2). (49)

Thus, ineck(u, t) = ineck(t) (1 + o(1)) and injecting the concentration profile through the neck (45) in Eq. (48), we obtain
that current is given by

ineck(t) = −De
L2

2s(u)

c0
∫ 1

0
s−1(u)du

(
c0

∫ u

0

s−1(x)dx+ chead(t)

∫ 1

u

s−1(x)dx

)
∂φ(u, t)

∂u
, (50)

that reads in original variables

Ineck(t) = Lc0S(0)ineck(t) = − 2γeS(l)D∫ L
0
S−1(y)dy

(
c0

∫ l

0

S−1(y)dy + chead(t)

∫ L

l

S−1(y)dy

)
∂Φ(l, t)

∂l
. (51)

Finally, the current expression (51) indicates that the neck electrical resistance per unit of length is equal to

R(l, chead(t)) =

∫ L
0
S−1(y)dy

2γeS(l)D
(
c0
∫ l
0
S−1(y)dy + chead(t)

∫ L
l
S−1(y)dy

) . (52)

The overall electrical resistance of the neck Rneck is obtained by integrating the resistance per unit of length over the
entire neck length

Rneck (chead(t)) =

∫ L

0

R(l, chead(t))dl. (53)

3. Simplification of mathematical expressions for constant neck cross-section S(l) = S = πa2, for all 0 ≤ l ≤ L

For constant cross-section, the expression for the neck resistance per unit of length (52) simplifies to

R(l, chead(t)) =
L

2γeSD (c0l + chead(t)(L− l))
, (54)

leading to total neck resistance

Rneck (chead(t)) =
L

2γeSD (chead(t)− c0)
log

(
chead(t)

c0

)
, (55)

which tends, for constant ion concentration c0 ≈ chead(t) (cable theory hypothesis), to

Rneck (c0) =
L

2γeSDc0
. (56)
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Re-injecting the expression for the neck resistance (55) in current expression (51), we obtained that

Ineck(t) = R−1neck(chead(t)) (Φhead(t)− Φ0(t)) .. (57)

Here, we considered that dendritic resistance (≈ 10 − 15 MΩ [8]) was negligible compared to neck resistance, and thus,
that dendritic potential was close to resting potential Φ0. Note that current is positive when head potential is higher than
resting potential. Finally, diffusive outflux (47) reads

Jneck(t) =
2DSe

L
(chead(t)− c0) . (58)

C. Kinetics analysis of the electrical potential and ion concentration within the spine head when ion channels
open

1. Derivation of slow-fast dynamical system of equations (11-12) in the main text

To derive the coupled system of equations (11-12) in the main manuscript, we considered the dynamics of the number
of positive n+(t) and negative n−(t) inside the spine head when glutamate receptors are activated and trigger an influx
of positive ions inside the spine head with a rate

Isynaptic(t) = −g+(t) (Φhead(t)− Φreversal(t)) , (59)

where Φreversal (chead(t)) is the reversal potential of AMPA receptors. Considering that potassium and sodium are the
main ions transiting through AMPA receptors (i.e. neglecting the permeability of AMPA to chloride and calcium ions),
Goldman-Hodgkin-Katz equation states that Φreversal(t) is given by

Φreversal(t) = γ−1 log

(
PK [K+]out + PNa [Na+]out
PK [K+]in + PNa [Na+]in

)
, (60)

where PK and PNa are the receptor permeabilities to potassium and sodium, and [.]out and [.].in are the concentration of
ions outside and inside the spine head. Given that AMPA receptors are almost equally permeable to sodium an potassium
ions, i.e. PNa ≈ PK , equation (60) simplifies to

Φreversal(t) = γ−1 log

(
[K+]out + [Na+]out
[K+]in + [Na+]in

)
, (61)

that is, as c0 = [K+]out + [Na+]out and chead(t) = [K+]in + [Na+]in,

Φreversal (chead(t)) = γ−1 log

(
c0

chead(t)

)
≤ 0. (62)

Influx of positive ions through AMPA receptors is counterbalanced by the diffusive outflow Jneck(t) (47) through the neck,
and half of the neck current 1

2Ineck(t) (the other half of the current being due to the inward flow of negative ions from
dendrite to spine head), leading to the conservation equation

e
dn+(t)

dt
= Isynaptic(t)−

1

2
(Jneck(t) + Ineck(t)) . (63)

On the other hand, the dynamics of number n−(t) of negative ions inside the spine head results from the net difference
between the inwards electrical current and the diffusive outflow towards the dendrite and reads

e
dn−(t)

dt
=

1

2
(Ineck(t)− Jneck(t)) . (64)

Subtracting equations (63) and (64), and using the capacitor relation (30), we obtain that

cmsh
dΦhead(t)

dt
= Isynaptic(t)− Ineck(t). (65)

The small capacitance of spines precludes large differences between the number of positive and negative ions inside the
head n+(t) = n−(t) + O

(
e−1cmshΦ0

)
. Thus, the addition of kinetics equations (63) and (64) leads to the following

equation for the ion concentration inside the spine head

evh
dchead(t)

dt
=

1

2
(Isynaptic(t)− Jneck(t)) . (66)
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2. Derivation steady-state potential and concentration for sustained synaptic input g+(t) = g+ for all t ≥ 0

At steady state, the diffusive outflow of negative charge equilibrates inward current. This corresponds to set dn−(∞)
dt = 0

in Eq. (64) and leads to steady-state concentration

chead(∞) = c0 +
LIneck(∞)

2SDe
, (67)

Moreover, using steady-state concentration in neck resistance expression (55) we obtained the steady state I-V relation

Φhead(∞) = Φ0 +
1

γ
log

(
1 +

LIneck(∞)

2DSc0e

)
. (68)

At steady-state, neck current Ineck(∞) is equal to the synaptic current Isynaptic(∞) = −g+
(

Φhead(∞)− γ−1 log
(

c0
chead(∞)

))
,

which leads to the implicit equation for steady-state intensity

Ineck(∞) = −g+
(

Φ0 + 2γ−1 log

(
1 +

LIneck(∞)

2DSc0e

))
. (69)
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