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Bacteria swimming speed
The swimming speed of the wild type E. Coli strain RP437 (see Methods section) is measured
using bacteria tracking (see Methods section) in a microchannel without flow ∼ 20µm away
from the channel walls. 3D velocities are estimated from the 2D projection measurements in
the x, y plane, assuming v2z = 1

2
(v2x + v2y). Fig. S1 displays the obtained velocity distribution,

with a mean speed of v0 ≈ 25µm/s. In the simulations a Gaussian velocity distribution with an
identical mean velocity is used, as shown by the black dashed line.

Background flow and channel height calibration
As described in the Methods section, passive beads are added to the bacterial suspension to
determine the flow profile inside the microchannel of approximate height and width 100µm
and 600µm. We use fluorescent polystyrene beads (1µm in diameter emitting red light, Thermo
Scientific) at a very low concentration (1/10 of the bacteria concentration) to prevent colliding
of bacteria and beads. The fact that bacteria and beads fluorescently emit light at different
wavelength allows to separately track them during the same experiment.

The first calibration step is to align the x−axis with the flow direction, a crucial step to
measure precise velocity and orientation distributions. This is simply done by rotating the x
and y axis until all flow velocity components along the y− direction become strictly zero.

Second the position of the top and bottom channel walls in z needs to be defined and the z
displacement of the stage needs to be linked to the position of the focal plane within the channel
height. The latter requires a calibration step, as the use of an air lens induces a mismatch
in refraction index with the solution inside the microchannel. For this calibration we use the
measured Poiseuille flow profile Vx, first as a function of the stage position, by scanning through
the channel height moving the microscope stage in the z direction. By adjusting the symmetric
profile we can determine the stage positions that correspond to the top and bottom channel walls
to be in focus. This gives an apparent height of the channel of H̄ = 70.5µm. To obtain the
correction factor that needs to be applied to obtain the z position inside the microchannel from
the z displacement of the stage, the exact channel height needs to be determined. We again
use the parabolic flow profile for this purpose. The flow rate imposed by the syringe pump
(Cellix ExiGo, Ireland) is known precisely as it has been independently calibrated using a flow
sensor. By measuring the maximum flow velocity in the channel center as a function of different
applied flow rates we can determine the exact channel height using the Poiseuille flow profile
for a rectangular microfluidic channel (46),
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. In this way the real channel height can be

determined to be H = 96.1µm. Note that profilometer measurements lead comparable results
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Figure S1: Measured 3D distribution of bacteria swimming speed compared to Gaussian distri-
bution used in simulations (black dashed line).

(H = 98µm), but are considered slightly less precise, compared to the adjustment using the
flow profile. The conversion factor between the stage displacement and the position within the
channel height is thus found to be 1.3622.
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