Supplementary Information

Early detection and classification of live bacteria using time-lapse coherent imaging and deep learning

Hongda Wang^{1,2,3†}, Hatice Ceylan Koydemir^{1,2,3†}, Yunzhe Qiu^{1,2,3†}, Bijie Bai^{1,2,3}, Yibo Zhang^{1,2,3}, Yiyin Jin¹, Sabiha Tok^{1,2,3,4}, Enis Cagatay Yilmaz¹, Esin Gumustekin⁵, Yair Rivenson^{1,2,3}, Aydogan Ozcan^{1,2,3,6,*}

¹Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA

²Bioengineering Department, University of California, Los Angeles, CA, 90095, USA

³California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA

⁴Department of Biophysics, Istanbul Medical Faculty, Istanbul University, Istanbul, 22000, Turkey

⁵Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA

⁶Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.

†Equal contributing authors.

*Corresponding author: ozcan@ucla.edu

Figure S1. Training loss, true positive rate (TPR), and positive prediction value (PPV) curves of the neural network model for colony growth detection.

Figure S2. Training loss and classification accuracy curves of the neural network model for colony species classification.

Figure S3. Schematics comparing the major steps involved in each one of the three different methods analyzed in this work.

Figure S4. Example photos of CHROMagarTM ECC plates for two different bacterial concentrations of (A) 37.9 ± 5.6 CFU L⁻¹, (B) 160 ± 21.3 CFU L⁻¹. a1) No pre-incubation, after transferring bacteria from filter membrane to the agar plate and incubation at a benchtop incubator for 24 h. a2) No pre-incubation, transferred bacteria from the filter membrane in the photo of a1, incubated at the lens-free imaging setup for 24 h. b1) 5 h pre-incubation, after transferring bacteria from filter membrane to the agar plate and incubator for 19 h (total incubation time: 5 + 19 = 24 h). b2) 5 h pre-incubation, transferred bacteria from the filter membrane in the photo of a1, incubated at the lens-free imaging setup for 19 h (total incubation time: 5 + 19 = 24 h). b2) 5 h pre-incubation, transferred bacteria from the filter membrane in the photo of a1, incubated at the lens-free imaging setup for 19 h (total incubation time: 5 + 19 = 24 h).

Figure S5. Resolution characterization of the lens-free bacterial colony detection system. (a) Raw hologram captured by the image sensor. (b) Digitally back-propagated hologram. (c) Zoomed-in region demonstrates a half-pitch resolution of \sim 3.5 µm.

Figure S6. E. coli colonies grew at different depths within the 3D culture medium. (a) Image of the sample plate captured using a lens-based benchtop microscope after 24 hours of incubation and stitched by the microscope software. (b) Image of the sample plate captured using our lens-free microscope at 24 h of incubation. (c) Images of 2 colonies marked in (a) and (b) that grew at different depths, axially separated by ~2.17 mm.

Figure S7. Colony counts obtained for optimization of the amount of water used for washing the sample container.

Figure S8. Bacteria transfer rate (%) obtained at different conditions of transfer time.

Figure S9. Schematic of pseudo-3D (P3D) DenseNet models for the detection and classification of growing colonies using the lens-free imaging system. The detection neural network model has 1.21×10^6 trainable parameters. The classification neural network model has 1.36×10^6 trainable parameters.

Table S1. Colony counts of some E. coli spiked samples in comparison to Colilert[®]-18 and plate counting.

					Plate counting					Plate counting				
Colilert®-18					(TSA plates)					(ECC ChromoSelect Selective Agar plates)				
				Std.					Std.					Std.
R1*	R2*	R3*	Average	deviation	R1†	R2†	R3†	Average	deviation	R1†	R2†	R3†	Average	deviation
172.3	172.3	135.4	160.00	21.30	169	162	198	176.33	19.09	164	137	140	147.00	14.80
11	17.3	20.1	16.13	4.66	15	18	14	15.67	2.08	17	13	17	15.67	2.31
225.4	166.4	228.2	206.67	34.90	228	260	246	244.67	16.04	245	241	221	235.67	12.86
8.6	8.5	12.1	9.73	2.05	4	4	5	4.33	0.58	2	5	11	6.00	4.58
37.9	43.5	32.3	37.9	5.6	52	37	30	39.67	11.24	35	28	36	33.00	4.36
3.1	1	<1	2.05	1.48	3	1	0	1.33	1.53	3	3	2	2.67	0.58
107.6	113.7	101.7	107.67	6.00	76	116	99	97.00	20.07	150	134	123	135.67	13.58
172.3	210.5	121.1	167.97	44.86	165	165	141	157.00	13.86	169	171	164	168.00	3.61

R is for replicate sample * CFU per 100 mL † CFU per 0.1 mL

Table S2. Comparison of our device against a scanning bright-field microscope for imaging of an agar plate (60 mm diameter).

Configuration	This work	Bright-field microscope			
		$(4 \times /0.1 \text{ NA objective lens})$			
Field of view (FOV) per	29.4	14.4			
image (mm ²)					
Total FOV scanned (mm ²)	~3491	~2977			
Total imaging time per agar	~1.5	128			
plate (min)					
Effective pixel count (million)	570	435			
Observation depth (µm)	> 20,000	3,000 (with 20 µm accuracy) *			

* A larger focusing range and/or a higher accuracy would further increase image capture time.