
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The paper presents cell BLAST, a deep generative model to automatically identify cell types by 

searching a reference database. 

As more cells are sequenced and made available to the public, Cell BLAST (and similar tools) could 

be useful for us to rapidly interpret scRNA-seq results. 

 

The paper is well written and easy to follow. 

I have some major concerns with the method and the results, which need to be addressed. 

 

a) Since 2017, deep generative models have been used and established as valuable for different 

scRNA-seq data analysis tasks, e.g., dimension reductions, batch correction, and cell type 

annotations. In this manuscript, the authors use Adversarial Autoencoders (AAE), which is more 

flexible than variational autoencoders (VAE) but has more parameters and harder to train. In this 

manuscript, I don't see the advantages of using AAE to address any specific shortcomings of VAE 

in scRNA-seq data analysis. In several benchmark tests, e.g., dimension reductions, scVI (based 

on VAE) using a 5D latent space performs similarly to Cell Blast using 10D latent space (Supp. 

Fig.2). 

 

b) I appreciate the authors put their tool online for people to use. A recent paper (PMID: 

31500660) systematically compared 22 algorithms and found off-the-shelf SVM classifier works 

very well in practice. Cell BLAST did not perform so well compared to several classifiers such as 

SVM, RF, and LDA. Moreover, even scVI performed better than Cell BLAST in general. Finally, Cell 

BLAST is time-consuming to run. From this comparison paper, I don't see much of the values of 

using Cell Blast in practice. I do think that the authors should comment on and ideally repeat the 

Cell B last experiments in the comparison paper. 

 

c) From the experiments presented in this manuscript, it seems that Cell BLAST works well, and 

the p-values provided by Cell BLAST is useful for users to interpret the results. However, as deep 

learning models are 'black box' methods and are prone to adversarial attacks, extra information is 

helpful. For example, the authors can compute the ROCs of marker genes in discriminating a cell 

type from other cells. 

 

d) The authors introduced an adversarial batch correction term in the objection function and a 

weight lambda parameter to balance its contribution to the objective function. This parameter 

could be data-dependent. In Fig.1, it seems that Cell Blast did a decent job in batch-correction for 

the specific dataset. However, we still see strong batch effects in other datasets (e.g., Supp. Fig. 

3g, Supp. Fig. 4a). Therefore, to prove the robustness and effectiveness of this adversarial batch-

correction strategy, the authors need to do more side-by-side comparisons (e.g., with scVI) across 

different datasets. 

 

e) Currently, people have collected large numbers of scRNA-seq datasets, e.g., the panglaodb 

(https://panglaodb.se/index.html) has about 5.6 million collected and annotated cells. Moreover, 

the authors provide the marker genes for cell annotations. I think these maker genes could be 

useful for interpreting Cell Blast results (as in c). 

 

f) The authors used a 'normalized projection distance' for cell query and shows it improves Cell 

Blast query but has almost no effects on scVI results. It's not clear to me why this is the case. 

Have the authors do the comparisons on different datasets? How the weight (beta) of the KL 

divergence term in the VAE objective function influence the results? 

 

 

In summary, I think that Cell BLAST is an interesting and useful tool, especially for people with 



limited computational skills. However, I'm not convinced that it significantly improves similar tools 

for automatic cell annotations and for robust batch corrections given extra parameters and the 

results presented in this paper and in the comparison paper( PMID: 31500660). 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The manuscript by Cao et al. presents Cell Blast, a method and webtool to automatically assign 

cell identities by co-embedding single cell RNA-seq data with annotated reference data. The 

authors propose a generative model based on neural-networks to learn non-linear embeddings of 

high dimensional single cell RNA-seq data. The authors evaluated their method in terms of the 

accuracy of the resulting low dimensional embeddings, batch effect correction, and cell 

identification. 

 

The proposed method is interesting and, in particular, the webtool and the curated reference data 

can be a valuable resource for the community. However, the manuscript would benefit from 

addressing a number of issues in greater detail - see below. 

Major comments 

 

- The paper can greatly benefit from a figure illustrating the structure of the generative model 

used by the authors to improve readability of the methods section. 

- The model presented in this paper is similar to scVI. The major difference appears to be the 

reliance on adversarial training between the encoder and the discriminator networks while scVI 

relies on variational inference. In that sense, a proper discussion of the similarities and differences 

between the proposed model and scVI is important. 

- I disagree with the authors regarding the ability of scVI to perform cell querying (Supplementary 

Table 1). A modified version of scVI (scANVI) allows annotation of cells based on the posterior 

distribution, much like Cell Blast. This is described in a preprint: 

https://www.biorxiv.org/content/10.1101/532895v1 and on GitHub: 

https://nbviewer.jupyter.org/github/YosefLab/scVI/blob/master/tests/notebooks/annotation.ipynb. 

As such, I believe a proper comparison of both methods in terms of cell querying is important. 

- One of the strong points of the paper is the extensive curated collection of reference data. 

However, the rapid growth of scRNA-seq data will deem any reference outdated very quickly. What 

are the authors thoughts regarding maintaining their curated reference atlas? And more 

importantly, how does updating the atlas affect the pretrained model? 

- I got confused in the explanation of the stochastic autoencoder part (equations 6 – 9). In 

particular, how is it possible to skip the Poisson sampling. Please explain. 

- The authors rely on “Cell type nearest neighbor mean average precision (MAP)” to evaluate the 

accuracy of dimensionality reduction. This measure only evaluates how homogenous are the 

resulting low dimensional embeddings, with no regard to the correspondence of the neighborhood 

structure between the high and low dimensional spaces. My concern here stems from the fact that 

most of the cell labels are derived from manual annotations based on overlaying marker gene 

expression on low dimensional embeddings. Perhaps the authors should consider a more 

appropriate measure, such as: https://www.biorxiv.org/content/10.1101/786269v1 

- I am curious why did the authors decide to exclude tSNE and UMAp from the comparison of 

dimensionality reduction methods, while both are widely used within the single cell community. 

- While comparing the batch effect correction, the authors used PCA to obtain low dimensional 

embeddings for the corrected data of ComBat, MNN, and CCA anchor. This seems a bit unfair given 

that PCA on its own did not perform well, based on Figure 1b. Why not calculate MAP for these 

methods on the high dimensional data directly? 

- When comparing the performance of cell querying (Figure 1c and 1d), the authors report only the 

TP and TN values. It is important to report also FP and FN rates, or perhaps a combined measure 

such as F1. This is important given the expected class imbalance in most datasets. For example, 

the authors only reported the accuracy of 93% on the data shown in Figure 2a, although there is 



clearly a large class imbalance, which makes the accuracy a misleading measure of performance. 

- From Figure 1c and 1d, it seems that Cell Blast, compared to the other methods is very good at 

rejecting negative examples while it is comparable to the others in terms of the TP rate. Will be 

interesting to discuss this further. 

- I find the comparison to scmap and CellFishing.jl in predicting continuous cell differentiation a bit 

unfair. A better comparison can be made to other tools dedicated to probabilistic prediction, such 

as: scANVI or fateID. 

- The manuscript lacks a proper discussion section. The authors should adequately discuss the 

different aspects of model design and how it compares to other similar methods (e.g. scVI). How 

does the performance vary across methods per dataset (based on Figure 1d)? What are the 

important considerations which users and developers of querying methods should be aware of? 

What are the limitations of the current method? Also, a discussion of how they see their reference 

data evolving and how can their pretrained model adapt. 

 

Minor comments 

- Supplementary Table 2 can be enhanced by adding more details about the datasets, such as: 

number of cells and genes. 

- Please specify throughout the manuscript whether scmap-cell or scmap-cluster was used. 

- The figures and panels order do not always match the order by which they are mentioned in the 

manuscript. 

- The y-axis label of Figure 1d is “Value”. Please specify. 

- In Figure 1d, the average value for scmap is lower than the numbers for positive and negative. 

Please explain. 

- What is meant by “Time per query” in Figure 1e? Is it time per cell or per dataset? In case it is 

the later, I would argue that it is negligible since we are talking about a 300ms range. 

- Please explain the Seurat Alignment score briefly. 

- It is not clear in which experiments was the “online tuning” used. Please specify explicitly. 

- Some details are missing from the methods section. For example, how was the feature selection 

performed, how many features were retained for each dataset, and how sensitive is Cell Blast to 

these choices? 

 

 

 



 

Detailed Responses to Referees’ Comments 

Referee 1 Comments 

The paper presents cell BLAST, a deep generative model to automatically identify cell types 

by searching a reference database. As more cells are sequenced and made available to the 

public, Cell BLAST (and similar tools) could be useful for us to rapidly interpret scRNA-seq 

results. The paper is well written and easy to follow.  

Thanks for the encouraging comment! 
 

I have some major concerns with the method and the results, which need to be addressed. 

a) Since 2017, deep generative models have been used and established as valuable for 

different scRNA-seq data analysis tasks, e.g., dimension reductions, batch correction, and cell 

type annotations. In this manuscript, the authors use Adversarial Autoencoders (AAE), which 

is more flexible than variational autoencoders (VAE) but has more parameters and harder to 

train. In this manuscript, I don't see the advantages of using AAE to address any specific 

shortcomings of VAE in scRNA-seq data analysis. In several benchmark tests, e.g., dimension 

reductions, scVI (based on VAE) using a 5D latent space performs similarly to Cell Blast 

using 10D latent space (Supp. Fig.2). 

Thanks for the insightful comment! 
 
One key advantage of using AAE is that, instead of being limited to Gaussian distribution 
with diagonal covariance matrices (as in typical VAEs), the posterior distribution in AAE is 
effectively parameterized by the encoder neural network and can be learned from data directly. 
Particularly, such variational posterior reflects the “shape” of local data manifold (see Line 
89-104 Page 5, and Supplementary Fig. 6-7 for more details), enabling a novel 
“manifold-aware” similarity metric (NPD). Multiple assessments showed that the new metric 
is more accurate and stable than Euclidean distance in measuring cell-to-cell similarity (in the 
latent space, Supplementary Fig. 6g, h; 8c). 
 
Meanwhile, as demonstrated in the Methods section (Line 396-402, Page 17), our model is 
rather stable to train despite the use of adversarial mechanisms. Intuitively, the cell 
embeddings in Cell BLAST lie in a low-dimensional latent space mapped from 
high-dimensional (gene) expression space, thus the support of cell embedding distribution and 



 

prior distribution “span the full embedding space”, effectively extricating the model from the 
“disjoint support” problem, which is believed to be the major contributing factor to training 
instability in conventional GANs1. 
 
Last but not the least, while, as being pointed out correctly by the referee, AAE has more 
parameters than VAE due to the additional discriminator networks, the number of additional 
parameters is rather marginal, given the fact that the majority of parameters in 
autoencoder-based networks like AAE and VAE come from the encoder (especially the first 
layer) and the decoder (especially the last layer). For example, the table below lists the exact 
number of parameters in architecturally equivalent VAE-based and AAE-based networks for a 
typical use case with 1,000 genes as input, 10D latent embedding, and one 128D hidden layer 
in encoders, decoders and discriminators (bias terms are left out): 
 

Layers VAE AAE 

Encoder layer 1 (input to hidden layer) 1,000 * 128 1,000 * 128 

Encoder layer 2 (hidden layer to embedding) 128 * 10 * 2 128 * 10 

Decoder layer 1 (embedding to hidden layer) 10 * 128 10 * 128 

Decoder layer 2 (hidden layer to output) 128 * 1,000 * 2 128 * 1,000 * 2 

Prior discriminator layer 1 (embedding to hidden layer) N.A. 10 * 128 

Prior discriminator layer 2 (hidden layer to prediction) N.A. 128 * 1 

Total 387,840 387,968 

 
It’s clearly shown that the AAE-based network contains just 128 more parameters (0.033% 
out of 387,840) than the VAE-based one. Meanwhile, Cell BLAST also supports categorical 
latent variable (notated as 𝑐 in the manuscript) and adversarial batch alignment in addition to 
the basic configuration listed above, further leading to 128 * 20 + 20 * 10 (= 2,760, or 0.71% 
increase, for categorical latent variable with 20 categories) + 10 * 128 + 128 * 10 (= 2,560, or 
0.66% increase, for adversarial batch alignment with 10 batches to be aligned). Thus, we 
believe that the additional ~1.38% parameter burden caused by adversarial components is 
minor and largely outweighed by its benefits. 
 
Lastly, as described in the manuscript (Line 515-519, Page 22), the latent dimensionality (5D) 
of scVI in Supplementary Fig. 3b, c was selected based on its performance only. But we’d 
also like to clarify that reduced latent space dimensionality does not significantly affect the 
calculation above, as a VAE network with 5D latent space contains 1,000 * 128 + 128 * 5 * 2 
+ 5 * 128 + 128 * 1,000 * 2 = 385,920 parameters, only ~0.5% less than a 10D latent space 
VAE. 
 



 

 

b) I appreciate the authors put their tool online for people to use. A recent paper (PMID: 

31500660) systematically compared 22 algorithms and found off-the-shelf SVM classifier 

works very well in practice. Cell BLAST did not perform so well compared to several 

classifiers such as SVM, RF, and LDA. Moreover, even scVI performed better than Cell 

BLAST in general. Finally, Cell BLAST is time-consuming to run. From this comparison 

paper, I don't see much of the values of using Cell Blast in practice. I do think that the 

authors should comment on and ideally repeat the Cell Blast experiments in the comparison 

paper. 

Thanks for the reminder. After checking the released script by Abdelaal et al. 2 
(https://github.com/tabdelaal/scRNAseq_Benchmark), we found several flaws which, 
unfortunately, changed the standard behavior of Cell BLAST artificially and further led to 
misperception, such as 1) limiting model training process to 50 epoch only (instead of the 
default 1,000 epochs with dynamic early stopping), resulting in significant under-training for 
several datasets; 2) ignoring the feature selection step, increasing not only training difficulty 
but also computation time; 3) removing p-value-based hit filtering before making predictions, 
further confounding final prediction with unreliable hits. 
 
After correcting these flaws (as well as various coding bugs), we re-ran the benchmark with 
exactly the same datasets (our full modified benchmark repository is available at 
https://github.com/gao-lab/scRNAseq_Benchmark), and found that the performance of Cell 
BLAST is among top tier, significantly better than scVIa, RF, LDA, and comparable with 
SVM (Additional Fig. 1-2).  
 

 
a After close inspection, we found that the Abdelaal et al did not used the original unsupervised scVI but rather the 
extended supervised scANVI model3. 



 

 
Additional Figure 1 Repeating the intra-dataset and inter-dataset experiments in 
Abdelaal et al. using Cell BLAST with / without online tuning. (a) Median F1-score of 
intra-dataset predictions (corresponding to Abdelaal et al.’s Fig. 1a). (b) Percent of unlabeled 
cells in intra-dataset predictions (corresponding to Abdelaal et al.’s Fig. 1b). (c) Median 
F1-score of inter-dataset predictions in the “PbmcBench” datasets (corresponding to Abdelaal 
et al.’s Fig. 3a). (d) Median F1-score of inter-dataset predictions in the brain datasets, with 
major lineage annotation (corresponding to Abdelaal et al.’s Fig. 4a). (e) Median F1-score of 



 

inter-dataset predictions in the brain datasets, with deeper level annotation of 34 cell 
populations (corresponding to Abdelaal et al.’s Fig. 4b). (f) Median F1-score of inter-dataset 
predictions in the “CellBench” datasets (corresponding to Abdelaal et al.’s Fig. S8a). (g) 
Median F1-score of inter-dataset predictions in the pancreatic datasets (corresponding to 
Abdelaal et al.’s Fig. 5a). 
 

 
Additional Figure 2 Repeating the rejection experiments in Abdelaal et al. using Cell 
BLAST with / without online tuning. (a) Percent of unlabeled cells in the negative control 
experiment (corresponding to Abdelaal et al.’s Fig. 6a). (b) Percent of unlabeled cells in the 
unseen population experiment (corresponding to Abdelaal et al.’s Fig. 6b). 
 
We failed to repeat the computation time assessment in Abdelaal et al., due to the 
unavailability of benchmarking hardware configuration. However, we found that Cell BLAST 
took ~1.3 min for the “Xin” dataset (instead of the 75 min as stated in Abdelaal et al.) and just 
~8.6 min for the largest one (“Zheng 68K”) on a standard Linux server in CPU-only mode 
(Intel Xeon Gold 6240 CPU, 192G RAM, limited to 8 threads per job to simulate typical 
desktop computation power). As comparison, SVM took ~4.2 min, SingleCellNet took ~2.5 h 
and SingleR took ~6.3h on the largest “Zheng 68K” dataset with the same feature set and 
hardware configuration. 
 
Last but not the least, we’d like to point up the fact that Cell BLAST is more than a dedicated 
cell typing tool but also an accurate and robust general-purpose querying algorithm for 
heterogeneous single-cell transcriptome datasets (Line 25-26 Page 3, Line 260-266 Page 10, 
also see Response to Comment 3 of the 2nd referee for more discussion). The unsupervised 
nature of Cell BLAST model enables not only identifying novel type of cells (Line 151-172, 
Page 7) but also predicting various types of features including continuous cell differentiation 
potential (Line 197-218, Page 8-9). 
 
 



 

c) From the experiments presented in this manuscript, it seems that Cell BLAST works well, 

and the p-values provided by Cell BLAST is useful for users to interpret the results. However, 

as deep learning models are 'black box' methods and are prone to adversarial attacks, extra 

information is helpful. For example, the authors can compute the ROCs of marker genes in 

discriminating a cell type from other cells. 

Thanks for the valuable recommendation. To help users’ interpretation, we designed and 
implemented a data-driven, gradient-based gene ranking algorithm to identify marker genes 
for particular cell types. Briefly, we used each cell type in turn as query data and the 
remaining cell types as reference data to perform Cell BLAST querying. Then the embedding 
space deviation of query cells from their nearest reference hits are propagated back to the 
original gene space by computing the gradient of the encoder neural network. Genes with 
higher gradient values indicate that the model “sees” them as “marker genes” of the particular 
query cell type (see Line 132-143, Page 6, as well as the Methods section, Line 691-713, 
Page 27-28 for more details). GSEA analysis shows that manually annotated cell type markers 
in the PanglaoDB database4 are significantly over-represented in genes with higher gradient 
values for the corresponding cell types (Supplementary Fig. 10), suggesting its high 
consistency between the model’s internal logic and prior biological knowledge. 
 
The new algorithm has been integrated into the standalone Cell BLAST package (v0.3.6) and 
will be available online at the Web Server in few months. 
 
 

d) The authors introduced an adversarial batch correction term in the objection function and 

a weight lambda parameter to balance its contribution to the objective function. This 

parameter could be data-dependent. In Fig.1, it seems that Cell Blast did a decent job in 

batch-correction for the specific dataset. However, we still see strong batch effects in other 

datasets (e.g., Supp. Fig. 3g, Supp. Fig. 4a). Therefore, to prove the robustness and 

effectiveness of this adversarial batch-correction strategy, the authors need to do more 

side-by-side comparisons (e.g., with scVI) across different datasets. 

Thanks for the reminder. We agree with the referee that the hyperparameter 𝜆𝒃 can be 
data-dependent. However, our empirical evaluations suggest that the current default 𝜆𝒃 (0.01) 
works reasonably well across various datasets (Additional Fig. 3). 
 



 

 
Additional Figure 3 MAP-SAS plot with different values of lambda. We took step-wise 
grid searching for a range of 𝜆𝒃 values from 0 to 1 for all four benchmark cases, and found 
that a 𝜆𝒃 value of 0.01 is always close to the optimal “elbow point” on the MAP-SAS plot, 
so we chose it as the default value for all adversarial alignment-based results in the 
manuscript as well as the online server. 
 
On the other hand, it seems there is sort of misunderstanding for the two specific cases this 
referee referred to:  
 
As for Supplementary Fig. 4g (originally Supplementary Fig. 3gb), it visualizes the batch 
correction result of the Tabula Muris dataset (“Quake_10x” and “Quake_Smart-seq2”). 
According to the original published paper5, cells profiled by these two technologies differ in 
terms of cell type composition (e.g., pancreatic cells only exist in “Quake_Smart-seq2” but 
not in “Quake_10x”, while kidney loop Henle cells only exist in “Quake_10x” and 
“Quake_Smart-seq2”, see Supplementary Table 3 (sheet 4) for all differences in cell type 
composition), so the two datasets are not supposed to be perfectly mixed per se. 
 
Meanwhile, in Supplementary Fig. 5a (originally Supplementary Fig. 4a), we intentionally 
shows the fact that while canonical batch correction strategy works for cross-dataset batch 
effect (i.e. the batch effect observed among six independent datasets: “Baron_human”, 
“Enge”, “Lawlor”, “Muraro”, “Segerstolpe” and “Xin_2016”), it does not handle 

 
b As we inserted a new Supplementary Fig. 2, the previous Supplementary Fig. 3-4 are now Supplementary 
Fig. 4-5. 



 

within-dataset batch effects (i.e. the batch effect among four different donors within the same 
“Baron_human” dataset) correctly (also see Additional Fig. 4 for the output produced by 
scVI). As such, we went on in the manuscript to demonstrate that the adversarial batch 
correction strategy employed by Cell BLAST can be extended to deal with multiple levels of 
batch effect simultaneously: as shown in Supplementary Fig. 5d-h, Cell BLAST 
successfully removed both cross-dataset and within-dataset batch effect when configured to 
do so (Supplementary Fig. 5f is the equivalent of Supplementary Fig. 5a with multi-level 
batch effect correction enabled). 
 

 
Additional Figure 4 Within-dataset batch effect also remains when cross-dataset batch 
effect is corrected using scVI. This is the scVI equivalent of Supplementary Fig. 5a. 
 
We’re sorry for such misunderstanding, and have revised the manuscript with these additional 
explanations accordingly (Legend of Supplementary Fig. 4, and Line 79-86, Page 4-5). 
 
 

e) Currently, people have collected large numbers of scRNA-seq datasets, e.g., the panglaodb 

(https://panglaodb.se/index.html) has about 5.6 million collected and annotated cells. 

Moreover, the authors provide the marker genes for cell annotations. I think these maker 

genes could be useful for interpreting Cell Blast results (as in c). 

Thanks for the helpful recommendation! We adopted the suggestion in the evaluation of our 
model interpretation method based on gene-space gradients. See the Response to Comment (c) 
for details. 
 

f) The authors used a 'normalized projection distance' for cell query and shows it improves 

Cell Blast query but has almost no effects on scVI results. It's not clear to me why this is the 



 

case. Have the authors do the comparisons on different datasets? How the weight (beta) of 

the KL divergence term in the VAE objective function influence the results? 

Thanks for the comment. We have improved the section “A posterior-based cell-to-cell 
similarity metric” to better explain the idea behind NPD and the difference between Cell 
BLAST posterior and scVI posterior (Line 88-115, Page 5). Briefly, we believe that the 
observed disparity roots from the fact that the posterior distribution in AAE-based model (i.e. 
Cell BLAST) is effectively parameterized by the encoder neural network and can be learned 
from data directly, while the distribution in VAE-based model (e.g. scVI) is strictly limited to 
Gaussian distribution with diagonal covariance matrices (also see Response to Comment (a) 
for more). Such inaccurately modeled posterior distribution will simply result in more harm 
for the “manifold-aware” similarity metric (NPD) than for the canonical “manifold-blind” 
Euclidean distance. Consistently, we confirmed the idea empirically over multiple datasets 
(Supplementary Fig. 6-7). 
 
Given that the diagonal covariance constraint of scVI posterior is hard-coded, adjusting the 
KL divergence weight would hardly make any improvement. To demonstrate that, we tested 
different KL divergence weights for scVI, and also different adversarial prior regularization 
weights for Cell BLAST. As expected, NPD consistently increased the performance of Cell 
BLAST, while decreased the performance of scVI regardless of KL regularization weight 
(Supplementary Fig. 8c). 
 
 

In summary, I think that Cell BLAST is an interesting and useful tool, especially for people 

with limited computational skills. However, I'm not convinced that it significantly improves 

similar tools for automatic cell annotations and for robust batch corrections given extra 

parameters and the results presented in this paper and in the comparison paper( PMID: 

31500660). 

  



 

Referee 2 Comments 

The manuscript by Cao et al. presents Cell Blast, a method and webtool to automatically 

assign cell identities by co-embedding single cell RNA-seq data with annotated reference data. 

The authors propose a generative model based on neural-networks to learn non-linear 

embeddings of high dimensional single cell RNA-seq data. The authors evaluated their 

method in terms of the accuracy of the resulting low dimensional embeddings, batch effect 

correction, and cell identification. 

The proposed method is interesting and, in particular, the webtool and the curated reference 

data can be a valuable resource for the community.  

Thanks for the encouraging comment! 
 

However, the manuscript would benefit from addressing a number of issues in greater detail - 

see below. 

Major comments 

1. The paper can greatly benefit from a figure illustrating the structure of the generative 

model used by the authors to improve readability of the methods section. 

Thanks for the valuable suggestion! We have added a corresponding figure illustrating the 
model structure (Supplementary Fig. 1a). 
 
 

2. The model presented in this paper is similar to scVI. The major difference appears to be the 

reliance on adversarial training between the encoder and the discriminator networks while 

scVI relies on variational inference. In that sense, a proper discussion of the similarities and 

differences between the proposed model and scVI is important. 

Thanks for the valuable suggestion, and we have appended a dedicated discussion into the 
manuscript accordingly (Line 99-115, Page 5). 
 
Briefly, both scVI and Cell BLAST use variational inference, and the key difference lies in 
the fact that the canonical variational autoencoder model used by scVI enforces Gaussian 
distribution (with diagonal covariance matrices) for the variational posterior distribution, 
while the adversarial component in Cell BLAST enables a free form of variational posterior 



 

distribution which is learned from data directly (via the encoder neural network). Multiple 
assessments have demonstrated that Cell BLAST models variational posterior more 
accurately than scVI, and that the improved variational posterior is necessary for accurate cell 
querying (Supplementary Fig. 6-7, Supplementary Fig. 8c, also see Response to Comment 
(a) and (f) of the first referee for more details on model comparison). 
 
 

3. I disagree with the authors regarding the ability of scVI to perform cell querying 

(Supplementary Table 1). A modified version of scVI (scANVI) allows annotation of cells 

based on the posterior distribution, much like Cell Blast. This is described in a preprint: 

https://www.biorxiv.org/content/10.1101/532895v1 and on GitHub: 

https://nbviewer.jupyter.org/github/YosefLab/scVI/blob/master/tests/notebooks/annotation.ipy

nb. 

As such, I believe a proper comparison of both methods in terms of cell querying is important. 

Thanks for the suggestion. In our manuscript, we defined cell querying as the process of 
unsupervisedly finding the reference cells most similar to the query cells (Line 26, Page 3), 
similar to searching the internet via a search engine like Google. The output of Cell BLAST 
(and other cell querying methods like scmap and CellFishing.jl) is a list of similar reference 
cells along with corresponding similarity metrics, so that existing annotations (like cell type 
and cell differentiation potential) in curated references can be utilized to annotate newly 
sequenced cells based on the identified transcriptomic similarity. Notably, analogous to 
classical biological sequence analysis, various similarity-based downstream analyses could be 
done, including but not limited to cell typing (e.g. Line 151-172, Page 7 for identifying novel 
type of cells, Line 196-218, Page 8-9 for predicting continuous cell differentiation potential). 
 
scANVI is designed and implemented based on a semi-supervised classification model, which 
does not fit our definition of cell querying algorithm. In particular, it does not return a list of 
most similar reference cells and similarity values that can be used to reject query cells like in 
other cell querying methods. Thus, we tested scANVI in our cell querying benchmark with 
the outputted maximal classification probability as a proxy of similarity to the predicted cell 
type. Unfortunately, it did not perform well compared to other methods whether or not dataset 
normalization is appliedc (Additional Fig. 5). 
 

 
c Like scVI, scANVI is supposed to be trained on raw count data. However, scANVI model trained on raw count 
data may not generalize well in the cell querying setup, where it is applied to unseen test datasets that can have 
different sequencing depths. As such, we tried scANVI with both raw count (default setting) and normalized count 
(intuitively more generalizable) data. 



 

 

Additional Figure 5 Cell querying benchmark with scANVI incorporated. (a) MBA 
curves reflecting the balance between predicting positive cell types and rejecting negative cell 
types (equivalent of Supplementary Fig. 9a). (b) AUC (Area Under Curve) of the MBA 
curves in (a) (equivalent of Supplementary Fig. 9b). (c) Average MBA at different cutoff 
values (equivalent of Supplementary Fig. 9c). (d) Positive and negative cell type MBA 
under the optimal cutoff of each method (equivalent of Fig. 1c). (e) Positive, negative and 
average cell type MBA under the optimal cutoff of each method (equivalent of Fig. 1d). 
 
 



 

4. One of the strong points of the paper is the extensive curated collection of reference data. 

However, the rapid growth of scRNA-seq data will deem any reference outdated very quickly. 

What are the authors thoughts regarding maintaining their curated reference atlas? And 

more importantly, how does updating the atlas affect the pretrained model? 

Thanks for the encouraging comment. Aiming to be a high-quality multispecies reference 
database, ACA is under regular update with the established protocol described in the Methods. 
Briefly, we regularly check new released datasets in NCBI GEO, and curate the raw 
expression data based on the publications as well as meta-data provided by the original 
authors. Meanwhile, inspired by the classic Blast2GO6 algorithm, we also implement a 
query-based, ontology-aware inference strategy for assigning Cell Ontology terms 
(BLAST2CO) to unlabeled data during curation. Empirical case study shows that both the 
incorporation of hit similarity and ontology structure lead to improved Cell Ontology 
assignment, especially for cells marked as “ambiguous” by the standard major voting strategy 
(Supplementary Fig. 19, also see Line 273-285, Page 10-11 for more details). 
 
Depending on the size and cell type composition of newly acquired data, existing models may 
be either fine-tuned (via the “online-tuning” strategy, see Line 631-643, Page 25-26 for more 
details) or built from scratch. Since ACA’s first public release in early 2019, the database has 
been updated with 5 new datasets (for 5 organs), with 1 model fine-tuned and 5 models built 
from scratch. 
 
We have added last updated date as well as the update strategy for all ACA references online. 
 
 

5. I got confused in the explanation of the stochastic autoencoder part (equations 6 – 9). In 

particular, how is it possible to skip the Poisson sampling. Please explain. 

Thanks for the meticulous question. During model training and variational posterior sampling, 
we apply equation 6-9 in order. When obtaining the point estimate of the variational posterior, 
we simply replace equation 7 with 𝒙$ = 𝒙& (i.e., skip the Poisson sampling), and apply the 
other equations as is: 

𝒙& =
10" ⋅ 𝒙
∑ 𝒙##∈𝒢

(6) 

𝒙$ = 𝒙& (7&) 
𝒛 = Enc𝒛(𝒙$; 𝜙()*), 𝒄 = Enc𝒄(𝒙$; 𝜙()*) (8) 

𝒍 = 𝒛 + 𝐻𝒄 (9) 
Programmatically, it is implemented by feeding the normalized data directly to the tensor 𝒙$ 
of Poisson sampling output, effectively “shortcutting” the Poisson sampling operation: 



 

(https://github.com/gao-lab/Cell_BLAST/blob/fa1f30d2d54b68a06479513164746a80c1fdb03
1/Cell_BLAST/directi.py#L415). 
 
 

6. The authors rely on “Cell type nearest neighbor mean average precision (MAP)” to 

evaluate the accuracy of dimensionality reduction. This measure only evaluates how 

homogenous are the resulting low dimensional embeddings, with no regard to the 

correspondence of the neighborhood structure between the high and low dimensional spaces. 

My concern here stems from the fact that most of the cell labels are derived from manual 

annotations based on overlaying marker gene expression on low dimensional embeddings. 

Perhaps the authors should consider a more appropriate measure, such as: 

https://www.biorxiv.org/content/10.1101/786269v1 

Thanks for the insightful comment! While preserving (finer) structures like within-cell-type 
variation during dimensionality reduction is strongly desired, practically, a fundamental 
challenge for performance assessment in real-world is the lack of a “reference” distance 
metric that characterizes the “genuine” functional variation of interest, or what distance 
metric is “appropriate” for the original high-dimensional space. For example, the commonly 
used Euclidean metric assumes inter-feature independence which is largely unrealistic for 
scRNA-seq data, especially given the fact that functionally related genes are usually 
expressed with high correlation d . Moreover, common distance metrics applied to the 
high-dimensional gene expression space are also confounded by data corruptions like dropout 
and measurement noise in scRNA-seq data. 
 
The MCV paper7 suggested by the referee is an interesting attempt regarding the evaluation of 
scRNA-seq data imputation methods. However, not all dimension reduction methods are 
trained by data reconstruction (e.g., some methods like tSNE are distance-based). It seems 
unclear how a similar strategy can be adapted to evaluate these dimension reduction methods, 
since it does not address the lack of a “reference” metric space. As such, with no absolutely 
appropriate “reference” evaluation metric, we believe that metrics based on the phenotypic 
evidence of cell types (including MAP) are a reasonable compromise, and have been adopted 
by many other works on dimension reduction methods8, 9, 10, 11. 
 
 

 
d Ideally, distance metrics aimed at characterizing the “cellular function space” should collapse functionally 
correlated genes into one feature (e.g., a functional module), instead of “overcounting” their contribution. 



 

7. I am curious why did the authors decide to exclude tSNE and UMAp from the comparison 

of dimensionality reduction methods, while both are widely used within the single cell 

community. 

Thanks for the recommendation. We did not include these methods previously as they are 
primarily used for data visualization. As suggested, we have now incorporated them into the 
dimensionality reduction benchmark, and found that they performed rather comparable with 
Cell BLAST in the benchmark datasets (Supplementary Fig. 3). 
 
 

8. While comparing the batch effect correction, the authors used PCA to obtain low 

dimensional embeddings for the corrected data of ComBat, MNN, and CCA anchor. This 

seems a bit unfair given that PCA on its own did not perform well, based on Figure 1b. Why 

not calculate MAP for these methods on the high dimensional data directly? 

Thanks for the comment. Accordingly, we repeated the assessment with high dimensional 
data-based results incorporated, and found increased Seurat alignment scores, at the cost of 
lower Mean average prevision (i.e. cell type resolution) (Additional Figure 6). 
 
Meanwhile, PCA is essentially a “batch-blind” dimension reduction algorithm as it simply 
tries to preserve the most prominent data variations, regardless of their sourcee. Given 1) the 
distinct representation of batch-corrected data among various methods (ComBat, MNN, and 
CCA anchor in high dimensional space while CCA, scVI, and Cell BLAST in 
dimension-reduced latent space), and 2) the various challenges for precisely modeling 
distance for high-dimensional scRNA-seq data (see Response to Comment 6 for more details), 
we believe that the “batch-blind” PCA operation helps a fair comparison. 
 

 
e Which also makes PCA a proper “negative control” for embedding-based batch correction. 



 

 
Additional Figure 6 MAP-SAS plot with high dimensional data-based results 
incorporated. Corresponding to Fig. 1b in the manuscript. Notably, the fact that Seurat 
alignment score decreases after PCA for ComBat, MNN and CCA anchor indicates that batch 
effect is still one of the major sources of variation in the batch-corrected expression matrices. 
 
 

9. When comparing the performance of cell querying (Figure 1c and 1d), the authors report 

only the TP and TN values. It is important to report also FP and FN rates, or perhaps a 

combined measure such as F1. This is important given the expected class imbalance in most 

datasets. For example, the authors only reported the accuracy of 93% on the data shown in 

Figure 2a, although there is clearly a large class imbalance, which makes the accuracy a 

misleading measure of performance 

Thanks for the reminder on the important issue! Given the class imbalance here, we have 
replaced the original plain accuracy with Mean Balanced Accuracy (MBA) metric for Fig. 2a 
and the tracheal case (Line 155, Page 7, also see Equation 29 for more details). Essentially, 
positive cell type MBA not only requires that the positive cells are accepted (not rejected), but 
also that the cells are given the correct cell type prediction. Negative cell type MBA requires 
that the negative cells are either rejected, or predicted as a limited set of closely-related cell 
types (as specified in Supplementary Table 5). We also reported the combined metric of 
average MBA (third group in Fig. 1d, see Line 647-671, Page 26-27 for definition), which is 
an analogue to the F1 score. 



 

 
Moreover, we’d clarify that it is the positive and negative cell type MBA values that are 
reported in Fig. 1c, d, which should not be confused with TP and TN values. 
 
 

10. From Figure 1c and 1d, it seems that Cell Blast, compared to the other methods is very 

good at rejecting negative examples while it is comparable to the others in terms of the TP 

rate. Will be interesting to discuss this further. 

Thanks for the suggestion. Cell BLAST is designed as a general-purpose cell querying 
algorithm for searching large-scale scRNA-seq database. Analogous to the classic BLAST 
algorithm for sequence analysis, effectively excluding false hits is essential for its mission. In 
addition to the model design, we believe that the novel posterior-based, “manifold-aware” 
similarity metric effectively contributes to the performance improvement. Intuitively, the 
latent-space posterior density is expected to decrease more steeply between query and false 
hits than positive hits because of the lower reconstruction likelihood 𝑝(𝒙,-.|𝒍/0-,1) and 
𝑝(𝒙/0-,1|𝒍,-.), while the popular Euclidean distance metric is posterior-blind and is more 

likely to make false-positive calls (also see Line 89-115, Page 5 for more detailed discussions 
and empirical assessments). 
 
 

11. I find the comparison to scmap and CellFishing.jl in predicting continuous cell 

differentiation a bit unfair. A better comparison can be made to other tools dedicated to 

probabilistic prediction, such as: scANVI or fateID. 

Thanks for the suggestion.  
 
scANVI3 is designed as a semi-supervised classification model, accepting discrete cell class 
labels as supervision and returning continuous class distribution for the a given transcriptome. 
Thus, as being suggested by the referee, we selected reference cells with maximal lineage 
probability > 0.5 as the labelled training set and took the output class distribution as the 
lineage differentiation probabilities. The batch effect correction function is also enabled to 
correct the batch effect between reference and query data. As shown in Supplementary Fig. 
16b, g, and Fig. 2f, scANVI did not perform well. Specifically, Supplementary Fig. 16g 
reveals that the class distributions predicted by scANVI are almost one-hot and failed to 
model the continuous differentiation process correctly. Meanwhile, scANVI aligned many 
unrelated query cells to erythrocyte progenitors in the reference dataset, suggesting an 
inaccurate batch effect correction. 



 

 
FateID12 is a method similar to PBA, which infers differentiation probabilities from a dataset, 
under manual supervision in terms of terminal cell fates. The fact that FateID cannot be 
trained on a reference dataset and applied to another dataset for prediction excludes it from 
current comparison theme. 
 
 

12. The manuscript lacks a proper discussion section. The authors should adequately discuss 

the different aspects of model design and how it compares to other similar methods (e.g. scVI). 

How does the performance vary across methods per dataset (based on Figure 1d)? What are 

the important considerations which users and developers of querying methods should be 

aware of? What are the limitations of the current method? Also, a discussion of how they see 

their reference data evolving and how can their pretrained model adapt. 

Thanks for the valuable suggestion! We have revised the discussion section accordingly (Line 
248-287, Page 10-11). 
 
 

Minor comments 

13. Supplementary Table 2 can be enhanced by adding more details about the datasets, such 

as: number of cells and genes. 

Thanks for the suggestion. We have modified the table as suggested (Supplementary Table 
2). 
 
 

14. Please specify throughout the manuscript whether scmap-cell or scmap-cluster was used. 

Thanks for the comment. We have used scmap-cell throughout the manuscript, because only 
scmap-cell falls into our definition of “cell querying” (see Response to Comment 3 for 
details). A specific statement has been added to the Methods section (Line 673-674, Page 27). 
 
 

15. The figures and panels order do not always match the order by which they are mentioned 

in the manuscript. 



 

Thanks for the suggestion. It appears that the problem is most prominent in the ionocyte case 
study. We have extensively rearranged Supplementary Fig. 11-15 to meet the order they are 
mentioned in the manuscript. Yet there are still some minor discrepancies in figure order. E.g., 
Supplementary Fig. 6g, h and Supplementary Fig. 7g, h are mentioned after 
Supplementary Fig. 8a, but the dataset correspondence would be much clearer if they are 
grouped with other figures in Supplementary Fig. 6 and Supplementary Fig. 7. As such, we 
prefer to keep the current order in this specific case. 
 
 

16. The y-axis label of Figure 1d is “Value”. Please specify. 

Thanks for the suggestion. The y-axis label “Value” should be “Mean average precision” 
(which was incorrectly placed in x-axis label). We have fixed the axis labels as suggested (Fig. 
1d). 
 
 

17. In Figure 1d, the average value for scmap is lower than the numbers for positive and 

negative. Please explain. 

Thanks for the comment. The middle lines in the boxplot are medians rather than means. It is 
indeed possible that the median of the average of two variables is lower than the median of 
each variable. For the record, the MBA values for scmap in Fig. 1d are listed below: 

Experiment Positive types Negative types Average 

1 0.841 0.760 0.801 

2 0.818 0.830 0.824 

3 0.654 0.885 0.770 

4 0.896 0.507 0.702 

5 0.846 0.758 0.802 

6 0.818 0.827 0.823 

7 0.638 0.836 0.737 

8 0.899 0.507 0.703 

9 0.843 0.728 0.786 

10 0.815 0.828 0.821 

11 0.629 0.837 0.733 

12 0.906 0.528 0.717 

13 0.841 0.748 0.794 

14 0.806 0.834 0.820 

15 0.653 0.856 0.754 



 

16 0.899 0.531 0.715 

Median 0.830 0.794 0.778 

 
 

18. What is meant by “Time per query” in Figure 1e? Is it time per cell or per dataset? In 

case it is the later, I would argue that it is negligible since we are talking about a 300ms 

range. 

Thanks for the reminder! The “Time per query” should be read as “Time per (query) cell”, so 
the time difference is quite substantial. We have revised the y-axis label of Fig. 1e to be 
“Time per query cell” to avoid possible confusion. 
 
 

19. Please explain the Seurat Alignment score briefly. 

Thanks for the suggestion. We have added a brief explanation for Seurat alignment score in 
the Methods section (Line 534-541, Page 22). 
 
 

20. It is not clear in which experiments was the “online tuning” used. Please specify 

explicitly. 

Thanks for the comment. We used “online tuning” only in the cross-species querying between 
the “Tusi” and the “Velten” dataset in the hematopoiesis case study. Specific statements can 
be found in Line 213 Page 8, Line 643-645 Page 26, and Line 762 Page 30. 
 
 

21. Some details are missing from the methods section. For example, how was the feature 

selection performed, how many features were retained for each dataset, and how sensitive is 

Cell Blast to these choices? 

Thanks for the comment. We used the “FindVariableGenes” function in Seurat v2 as the 
feature selection method. We have added some detailed explanation in the Methods section 
(Line 480-482, Page 20). The number of features retained for each dataset has been added to 
Supplementary Table 2. We also added a feature selection benchmark to evaluate the 
robustness of Cell BLAST to different feature selection thresholds (Supplementary Fig. 2). 
We found that the performance of Cell BLAST is relatively stable as the number of selected 



 

genes varies from 500-5,000. Gene sets with < 500 genes contain insufficient information 
while gene sets with > 5,000 genes contain too much noise and also make the model difficult 
to train (especially for small datasets like “Muraro” and “Adam”). 
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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors are responsive in addressing my comments and thus the paper has been improved. I 

have a few further comments after reading the letter and the revised manuscript, mainly about the 

experiments and results. 

 

a) First, I appreciate the authors for comparing the parameters for VAE and AAE and also the 

experiments demonstrating that Cell Blast is among the top-tier methods. The authors claim that 

Cell Blast is stable and easy to train, but it seems that it took a quite large number of epochs 

(1000 epochs). It's good to compare the training dynamics with those of VAE-based methods to 

show training is stable. 

 

b) The authors pointed out that feature selection is key to get performance on par with SVM. In 

the revision, the authors also showed Cell blast results were robust to the number of selected 

genes. However, there are potential problems for selecting genes for querying cells. For example, 

some novel cells may only express a few selected genes. This is especially problematic for large 

datasets as many more cells are becoming available. So potentially a large number of genes 

should be used for a large reference dataset. How many genes are sufficient to separate the cell 

types in the reference dataset? The gene selection section of the paper is unclear to me: for a 

large reference dataset including cells from different studies, do the authors use the union of 

genes selected in 50% datasets? Will this approach filter out marker genes of rare cell types? 

 

c) Bath correction is important for effective querying cells. In the revision, the authors clarified and 

emphasized in Supp. Fig.5 that Cell Blast can deal with both inter-dataset and intra-dataset batch 

effects. However, this approach seems to be limited as you need to train an extra NN for each 

added batch vector. Instead, the Harmony tool has been developed for this task. Besides, a recent 

study (PMID: 31948481) showed that Harmony is generally the best batch-correction method for 

scRNA-seq data but missed in the benchmarking. The authors need to compare to the state-of-

the-art to show it's effectiveness. Also, does Harmony + other methods (e.g., PCA) do better than 

Cell Blast? More recently, a related method scphere also based on NN, claimed to be able to deal 

with multiple batch effects. The SAUCIE method, also based on NN was able to correct batch 

effects. 

 

d) For benchmarking dimension reduction, a more proper way is to use the same number of 

dimensions, e.g., 10 (although for linear methods such as PCA need more PCs). Also, it's good to 

add the parameters for different methods as DM methods such as tSNE are sensitive to parameter 

settings. 

 

e) The authors showed the Smart-seq2 data results in additional Fig.3. It's not clear the zero-

inflation in Smart-seq2 data influence the results (Cell Blast used Gamma-Poisson distribution for 

the count data)? 

 

f) Should doublets be removed first for using Cell blast, or cell blast is sensitive to annotate 

doublets? 

 

 

 

Reviewer #2: 

Remarks to the Author: 

I would like to thank the authors for adequately addressing all the comments. I believe the 

manuscript has improved significantly. 

 

The only additional remark I have is that I think Supplementary Fig1A deserves to be in the main 



text to help the readers with the model interpretation. After all, this is a methods paper and I find 

it strange that all the method description goes to the supplementary materials. 



 

Detailed Responses to Referees’ Comments 

Referee 1 Comments 

The authors are responsive in addressing my comments and thus the paper has been 

improved. I have a few further comments after reading the letter and the revised manuscript, 

mainly about the experiments and results. 

a) First, I appreciate the authors for comparing the parameters for VAE and AAE and also 

the experiments demonstrating that Cell Blast is among the top-tier methods. The authors 

claim that Cell Blast is stable and easy to train, but it seems that it took a quite large number 

of epochs (1000 epochs). It's good to compare the training dynamics with those of VAE-based 

methods to show training is stable. 

Thanks for the encouraging comment and reminder. A direct comparison of negative 
log-likelihood for scVI and Cell BLAST while being trained on the “Baron_human” dataset1 
reveals similar training dynamics (Supplementary Fig. 1a), triggering early-stopping at 218 
and 173 epochs respectively*. Of note, the losses of Cell BLAST adversarial component also 
converge stably during training (Supplementary Fig. 1b), as they operate on 
low-dimensional cell embeddings mapped from high-dimensional gene expression data (see 
Line 404-410, Page 18-19 for details). 
 
 

b) The authors pointed out that feature selection is key to get performance on par with SVM. 

In the revision, the authors also showed Cell blast results were robust to the number of 

selected genes. However, there are potential problems for selecting genes for querying cells. 

For example, some novel cells may only express a few selected genes. This is especially 

problematic for large datasets as many more cells are becoming available. So potentially a 

large number of genes should be used for a large reference dataset. How many genes are 

sufficient to separate the cell types in the reference dataset? The gene selection section of the 

paper is unclear to me: for a large reference dataset including cells from different studies, do 

the authors use the union of genes selected in 50% datasets? Will this approach filter out 

marker genes of rare cell types? 

 
* The default number of maximal training epochs is set to 1,000 in the current Cell BLAST Python package, with 
early-stopping technique employed which will stop the training process as soon as loss function on independent 
validation data no longer decreases. 



 

Thanks for the insightful comment.  
 
As pointed out by the referee, Cell BLAST is reasonably robust to the number of selected 
genes according to our feature selection benchmark (Supplementary Fig. 1d). Cell type 
resolution is roughly constant as the number of selected genes range from 500 to 5,000 in our 
benchmark datasets. Intuitively, the number of genes required to separate cell types in the 
reference dataset would increase with the level of data heterogeneity rather than data size. 
While it is hardly practical to give an exact number considering the various cell composition 
among different reference data, the default cutoffs work pretty well when training models on 
ACA reference panels, with all distinct cell types separated at least as well as in the original 
publication. Meanwhile, we also provide a guideline including sanity check for users training 
models on custom reference data (https://cblast.gao-lab.org/doc-latest/_static/DIRECTi.html). 
 
In the manuscript, we used the union of genes selected in 50% of “batches” when conducting 
gene selection for individual datasets (to mitigate within-dataset batch effect). Since the cell 
type composition of different batches within the same dataset is usually similar, the 50% 
cutoff should not cause missing markers†. When merging multiple datasets, we took the union 
of genes selected in individual datasets. Thus, markers of rare cell types existent in only one 
dataset would also be included. We have restructured related method sections to avoid further 
confusion [Line 501-519, Page 22].  
 
Meanwhile, as what being well demonstrated by the ionocyte case study presented in the 
manuscript, the non-linear NN-based model employed by Cell BLAST is able to identify rare 
novel cells even without the inclusion of their own markers‡. 
 
 

c) Bath correction is important for effective querying cells. In the revision, the authors 

clarified and emphasized in Supp. Fig.5 that Cell Blast can deal with both inter-dataset and 

intra-dataset batch effects. However, this approach seems to be limited as you need to train 

an extra NN for each added batch vector. Instead, the Harmony tool has been developed for 

this task. Besides, a recent study (PMID: 31948481) showed that Harmony is generally the 

best batch-correction method for scRNA-seq data but missed in the benchmarking. The 

 
† Meanwhile, we have made the 50% cutoff an easily tunable parameter 
[https://cblast.gao-lab.org/doc-latest/modules/Cell_BLAST.data.html#Cell_BLAST.data.ExprDataSet.find_variabl
e_genes], which users can modify if different batches vary considerably in cell type composition. 
‡ In the ionocyte case, where we reselected genes after the removal of ionocytes from reference data, there is 
indeed no ionocyte marker in the selected genes, and the model is still able to identify querying ionocytes as a 
novel cell type (Fig. 3b-c). This is because, intuitively, different expression pattern in non-marker genes is also 
informative, e.g., the lack of expression of reference cell type markers is in itself an indication of novel cell types. 



 

authors need to compare to the state-of-the-art to show it's effectiveness. Also, does Harmony 

+ other methods (e.g., PCA) do better than Cell Blast? More recently, a related method 

scphere also based on NN, claimed to be able to deal with multiple batch effects. The 

SAUCIE method, also based on NN was able to correct batch effects. 

Thanks for the reminder. As being suggested by the referee, we have added scPhere2, 
Harmony3, and SAUCIE4 to the batch effect correction benchmark (Fig. 2a)§. scPhere 
compared unfavorably with Cell BLAST in terms of both MAP and Seurat alignment score, 
and applying scPhere to our multilevel batch correction experiment reveals that scPhere 
achieved lower cell type resolution and lower batch correction performance for all levels of 
batch effects (Additional Fig. 1). On the other hand, Harmony was able to preserve true 
biological signal similarly well, but achieved lower batch alignment performance compared to 
Cell BLAST. Moreover, SAUCIE tends to overalign and achieved significantly lower MAP 
than other methods when two batches are being aligned. When challenged with more than two 
batches, it failed completely (bottom left panel of Fig. 2a). 
 
We believe that our adversarial batch correction strategy is efficient and scalable. Firstly, as 
demonstrated in the last response letter, an additional batch discriminator NN induces only a 
small parameter burden (< 1% of all trainable parameters). Secondly, the additional batch 
discriminator NNs do not complicate the training procedure, which remains to be two 
adversarial steps per iteration regardless of how many batch vectors are used (see Line 
412-416, Page 19 for detailed description). We did not observe training instability or 
noticeable slowdown in practice when using multiple batch discriminators. In fact, our 
adversarial batch correction strategy makes it trivial to scale to a large number of batches 
(Line 496-498, Page 22) and also multiple sources of batch effect. As demonstrated in our 
benchmark, our approach is more effective in eliminating batch effect compared to scPhere. 

 
§ scPhere and SAUCIE were also added in the dimension reduction benchmark (Supplementary Fig. 3). 



 

 
Additional Figure 1 Performance of multilevel batch effect correction by scPhere. Cell 
embedding colored by (a) cell type (corresponding to Supp. Fig. 5d), (b) dataset 
(corresponding to Supp. Fig. 5e), (c) donor in “Baron_human” (corresponding to Supp. Fig. 
5f), (d) donor in “Enge” (corresponding to Supp. Fig. 5g), (e) donor in “Muraro” 
(corresponding to Supp. Fig. 5h). 
 
 

d) For benchmarking dimension reduction, a more proper way is to use the same number of 

dimensions, e.g., 10 (although for linear methods such as PCA need more PCs). Also, it's 

good to add the parameters for different methods as DM methods such as tSNE are sensitive 

to parameter settings. 



 

Thanks for the suggestion. While it seems that using the same number of dimensions “fairer” 
in benchmarking, different dimension reduction methods have different suitable 
dimensionalities as pointed out correctly by the referee. We believe it makes more sense to 
compare different methods at their most suitable dimensionalities. Meanwhile, for the record, 
a comparison where the dimensionalities of all methods are fixed at 10 (except for tSNE, 
UMAP and SAUCIE where the dimensionality is 2) is shown in Additional Fig. 2. 
 

 
Additional Figure 2 Dimension reduction benchmark with fixed dimensionality of 10. (a) 
Mean average precision of different dimensionality reduction methods in each of the seven 
benchmark datasets, obtained under 10 dimensions except for tSNE and UMAP where 
dimensionality is limited to 2 (corresponding to Supp. Fig. 3b). (b) Ranking methods by their 
mean average precision across multiple benchmark datasets (corresponding to Supp. Fig. 3c). 
Error bars indicate mean ± s.d. 
 
We agree that other hyperparameters apart from dimensionality may also influence 
performance. However, exhaustively traversing the entire hyperparameter space for each 
method is simply computationally infeasible: 
 



 

Method Major hyperparameters apart from dimensionality 

PCA N.A. 
ZIFA N.A. 

ZINB WaVE 𝜖 (regularization weight) 
tSNE Initial PCA dimension, perplexity, exaggeration factor 

UMAP Initial PCA dimension, n_neighbors, min_dist 
Dhaka NN architecture 

scScope NN architecture, T (recurrence depth) 
DCA NN architecture 
scVI NN architecture 

 
Assuming “NN architecture” corresponds to just 2 hyperparameters (e.g., the number and 
dimensionalities of hidden layers), and 5 candidate values are tested for each hyperparameter, 

we would need to run !"!"#"#
!"#!"#""#!"#""#"

$
≈ 50.8 × the number of experiments in our 

current benchmark. Considering that our current dimension reduction benchmark cost about a 
week to finish on an HPC cluster using 500 CPUs, 50 × experiments roughly translates into 
1 year of computation time with equivalent hardware, which is unfortunately impractical. As 
such, we chose to use the default hyperparameter configuration of each method, which is the 
standard procedure employed by many benchmarking studies5, 6, 7. Meanwhile, we provide all 
benchmarking pipelines in our Github repository 
(https://github.com/gao-lab/Cell_BLAST/tree/master/Evaluation). Users interested in certain 
hyperparameter choices or methods not currently included can easily modify the pipelines to 
conduct custom experiments. 
 
 

e) The authors showed the Smart-seq2 data results in additional Fig.3. It's not clear the 

zero-inflation in Smart-seq2 data influence the results (Cell Blast used Gamma-Poisson 

distribution for the count data)? 

Thanks for the helpful suggestion! We conducted a direct comparison for the performance of 
Cell BLAST using NB (negative binomial / Gamma-Poisson distribution) vs ZINB 
(zero-inflated negative binomial), when trained on Smart-seq2 and UMI-based data 
respectively (Supplementary Fig. 2). The performance difference between NB and ZINB is 
generally small (∆MAP < 0.002 in 10 out of 11 datasets), though it does seem that ZINB fits 
Smart-seq2 data slightly better than NB, while NB fits UMI-based data slightly better than 
ZINB, consistent with that observed in a recent correspondence8. On the other hand, partly 
due to the additional zero-inflation factor, ZINB is more likely to over-align data than NB, 



 

risking false positive rate in terms of cell querying. E.g., when training model to align two 
datasets (“Quake_Smart-seq2_Fat” and “Quake_Smart-seq2_Brain_Non-Myeloid”, both are 
subsets of the “Quake_Smart-seq2” dataset used above), the ZINB-based model over-aligned 
B cells with oligodendrocytes, while the otherwise identical NB-based model did not 
(Additional Fig. 3). We believe that the risk of over-alignment outweighs the marginal gain 
in fitting plate-based non-UMI data, thus prefer the simpler NB as the generative distribution. 
 

 

Additional Figure 3 ZINB-based models are more likely to over-align than NB-based 
ones. (a-b) “Quake_Smart-seq2_Fat” and “Quake_Smart-seq2_Brain_Non-Myeloid” aligned 
by an NB-based Cell BLAST model with 𝜆𝒃 = 0.02 (two times the default value), where 
cell embeddings are colored by (a) cell type and (b) dataset respectively. (c-d) 
“Quake_Smart-seq2_Fat” and “Quake_Smart-seq2_Brain_Non-Myeloid” aligned by an 
otherwise identical ZINB-based Cell BLAST model, where cell embeddings are colored by (c) 
cell type and (d) dataset respectively. The over-alignment between oligodendrocytes and B 
cells are highlighted in red circles. Apart from these cells, there seems to be another 
over-alignment between brain pericytes and mesenchymal stem cells, but this is consistent 
with the fact that these cell types are related and share a certain transcriptomic signature9. 
 
 

f) Should doublets be removed first for using Cell blast, or cell blast is sensitive to annotate 

doublets? 

Thanks for the insightful comment. For doublets that consist of cells from the same cell type, 
Cell BLAST would annotate them as the corresponding constituent cell type, since the 



 

encoder network contains a normalization step (Equation 6) and increase in library size 
would not make any difference.  
However, for doublets that consist of cells from different cell types, it is possible that Cell 
BLAST gives undetermined prediction due to the probably uneven mixture of constituent 
cells. Thus, we advise standard data quality control including removal of low quality cells and 
potential doublets (https://cblast.gao-lab.org/FAQs#what-preprocessing-steps-are-necessary), 
which can be achieved using established methods10, 11, 12, 13. 
  



 

Referee 2 Comments 

I would like to thank the authors for adequately addressing all the comments. I believe the 

manuscript has improved significantly. 

The only additional remark I have is that I think Supplementary Fig1A deserves to be in the 

main text to help the readers with the model interpretation. After all, this is a methods paper 

and I find it strange that all the method description goes to the supplementary materials. 

Thanks for the encouraging comment! We included only the flowchart in the main text to 
quickly give readers an idea of the overall components and purposes of the Cell BLAST suite. 
As suggested, we have turned Fig. 1 into an illustration-only figure by combining the 
flowchart and illustration of model architecture. 
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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

I would like to thank the authors for responding comprehensively to my concerns. The additional 

analysis considerably strengthened the paper. I look forward to seeing a published version. 

 

I only have three minor comments below: 

 

1, For benchmarking, it's important to use the same inputs for different methods. For example, for 

methods requiring counts as input, the same set of genes should be used (I think the authors did 

that, but it's good to write this done in the paper). Also, it should be helpful for the authors to 

write down the number of genes used or the number of PCs used. The authors can put such 

information in the figure legends or a table. 

 

2, For dimension reduction benchmark (Supplementary Figure 3), I didn't see much difference as 

the error bars are highly overlapping except for SAUCIE (not sure why?). Detail parameter setting 

(maybe in a table) is of great help for readers interpreting the results. Similar to Figure 2a. 

 

3, The authors claim 'Furthermore, it elegantly scales to a large number of batches' is weak as the 

authors did not show its scalability to a large number of batches. In the manuscript, the authors 

demonstrated that CELL-Blast worked for the case with several batches based on a single run on 

one dataset only, still lots of unknown about this approach in different scenarios, e.g., over-

correcting with a large number of batches and cell type distributions in different batches are 

skewed. 



Detailed Responses to Referees’ Comments 

Referee 1 Comments 

I would like to thank the authors for responding comprehensively to my concerns. The 

additional analysis considerably strengthened the paper. I look forward to seeing a published 

version. 

Thanks for the encouraging comment! 
 

I only have three minor comments below: 

1, For benchmarking, it's important to use the same inputs for different methods. For example, 

for methods requiring counts as input, the same set of genes should be used (I think the 

authors did that, but it's good to write this done in the paper). Also, it should be helpful for 

the authors to write down the number of genes used or the number of PCs used. The authors 

can put such information in the figure legends or a table. 

Thanks for the insightful comments. We indeed used identical gene sets for all methods in the 
benchmarks and experiments. Sizes of these gene sets have been added in Supplementary 
Table 2. Specific statements have been added in the Methods section (Line 487 Page 19, 
Line 512 Page 20, Line 539 Page 21, Line 556 Page 21, Line 663 Page 25)*. 
 

2, For dimension reduction benchmark (Supplementary Figure 3), I didn't see much 

difference as the error bars are highly overlapping except for SAUCIE (not sure why?). 

Detail parameter setting (maybe in a table) is of great help for readers interpreting the 

results. Similar to Figure 2a. 

Thanks for the comment. The error bars in Supplementary Fig. 3c represent performance 
variation across seven benchmark datasets, which are indeed largely overlapping for most 
well-performing methods. In comparison, in Supplementary Fig. 3b where individual 
datasets are plotted separately, the error bars representing technical variation from different 
random initializations do not overlap. In other words, when specific datasets are considered, 

 
* The only exception is the cell querying benchmark, where the competing querying methods come with their own 
specially designed feature selection method. To avoid arbitrarily compromising the performance of these 
competing methods (e.g., scmap is shown to achieve best performance with 500 input genes1. Enforcing the same 
Seurat-based gene set as Cell BLAST would likely decrease its performance), each method used its own gene 
selection method as recommended by the original authors (Line 648 Page 24). 



the difference among methods is significantly larger than technical variation, while no method 
consistently outperforms others across multiple datasets. We believe that several design issues 
of SAUCIE might have contributed to its observed poor performance in our benchmark, 
including its limitation to 2-dimensional embeddings, and its complex encoder and decoder 
architecture (3 hidden layers each, as compared to 1 in most other NN-based methods, which 
makes it considerably harder to train2). 
 
As being described in the manuscript (Line 487 Page 19, Line 512 Page 20), all 
hyperparameters are left at their default values when conducting benchmark experiments. 
 

3, The authors claim 'Furthermore, it elegantly scales to a large number of batches' is weak 

as the authors did not show its scalability to a large number of batches. In the manuscript, the 

authors demonstrated that CELL-Blast worked for the case with several batches based on a 

single run on one dataset only, still lots of unknown about this approach in different scenarios, 

e.g., over-correcting with a large number of batches and cell type distributions in different 

batches are skewed. 

Thanks for the insightful comment! We have incorporated the referee’s comments and revised 
the statement accordingly (Line 267 Page 10). 
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