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Supplementary Discussion 
On classifying stability 

At short timescales, the distinction between stable and unstable representations can be 

subjective. For instance, we argued that the early benefit representation (Figure 5c,d) was stable 

for ~1 s, while another observer may describe it as a slowly evolving sequence. Going forward, 

developing objective tests to distinguish these cases will be critical, particularly given the 

prevalence of apparent sequences in the rodent1–4. Nonetheless, the extended stability of most 

representations (e.g., mid-trial benefit, choice, and expected reward) is unequivocally distinct 

from sequence-like encoding. 

The type of stability we describe in OFC (i.e., consistent selectivity within the trial) 

contrasts other types of stability in the literature. For instance, selectivity may change within the 

trial, but, for a given time in the trial, remain consistent across experimental sessions2,5; or 

selectivity may be consistent between behavioral contexts, irrespective of temporal stability6. 
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Supplementary Figures 
Behavior 

 
Supplementary Figure 1. Logistic regression of choice behavior. 
(a,b) The logistic function (Equation (1)) fit to the choice behavior from individual sessions is plotted (thin 
gray curves) as a function of offer size for monkeys N (a) and K (b). The average curve across sessions 
(thick black curve) was computed as the mean of the individual curves for visualization only, and does not 
represent a separate logistic function fit to the aggregate data.  

The smoothly increasing accept rate within individual sessions demonstrated that valuation of the 
offer varied from trial to trial, not merely between sessions (as demonstrated in Figure 1b). Alternatively, 
an abrupt step function would have suggested that animals applied a constant threshold for offer size, 
above which they accepted all offers.  

(c,d) The logistic model included coefficients for offer size (boffer) and a constant (bconstant) and 
additional parameters for a sub-unity saturation point (d) and sublinear utility function (g, monkey K only). 
For monkeys N (c) and K (d), bar height represents the median parameter value across N=26 (c) and 
N=86 (d) experimental sessions for beta (b; gray bars) and non-beta (open bars) parameters, which 
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reference the left and right ordinates, respectively. Parameter values from individual sessions are shown 
as circles with outliers (triangles) plotted not-to-scale (all values were included in median calculation and 
hypothesis testing). Spread along the horizontal axis is arbitrary and for display purposes only. Asterisks 
indicate probability that the true median equaled the null hypothesis (horizontal line; * p < 0.05; *** p < 
0.001; two-sided Wilcoxon signed rank test). Null hypotheses for beta and non-beta parameters were 
zero and one, respectively. Specific values for medians and associated p-values for monkey N or K, 
respectively, are as follows: 𝛽constant = -3.7 or -1.9, p = 3*10-8 or 3*10-26; 𝛽offer = 20 or 9.0, p = 3*10-8 or 
3*10-26; 𝛿 = 0.77 or 0.82, p = 3*10-8 or 3*10-26; and, for monkey K only, 𝛾 = 0.83, p = 0.03.  

In summary, both monkeys were significantly more likely to accept an offer the larger its 
magnitude, though with an overall tendency to reject all offers and a maximal acceptance rate for the 
largest offers around 80%. In addition, monkey K exhibited a sub-linear utility function as reflected in the 
fitted values of the parameter g (see Methods), i.e., the increase in utility for a given increase in offer size 
became less as offer size increased.  
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Supplementary Figure 2. Rejection timing. 
(a,b) The frequency of fixation breaks (i.e., reject choices) per 100 ms time bin is shown for each offer 
size (colors, see legend) as a function of time from the onset of the offer period as the percentage of all 
rejections (a) or as percentage of rejections for the given offer size (b) for monkeys N and K (left and right 
panels, respectively). (c) The Kaplan-Meier estimator of the fixation survival function is shown for each 
offer size (colors as in (a,b)) as the proportion ± 95% confidence interval (shading) of trials in which the 
animal is fixating as a function of time from the onset of the offer period. The derivative of the survival 
function conditioned on maintenance of fixation approximates the hazard rate functions shown in Figure 
1c. The hazard rates scaled inversely with offer size (Cox proportional hazards, excluding 0-rewards: 𝛽offer 
± s.e.m. = -0.29 ± 0.0098 or -0.29 ± 0.0069, p < 10-16 or 10-16 (less than machine precision), monkey N or 
K, respectively; see Supplementary Figure 3 regarding 0-reward offers).  
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Supplementary Figure 3. FP fill-in timing and effect on rejection time. 
In a subset of early experimental sessions for monkey N, the fixation point (FP) transitioned from an open 
annulus to a filled circle at the beginning of the work period (FP fill-in late), instead of the beginning of the 
offer period (FP fill-in with offer), as in all other sessions. Therefore, for these early sessions, the animal 
did not receive an explicit cue as to the beginning of the offer period on 0-reward offers (in contrast, on 
non-zero offers, the onset of the offer icons cued the offer period). We reasoned that this 0.5 s delay on 
0-reward offers may have contributed to a delay in responding to the 0-reward offers in particular, and 
potentially to any size offer. Here we plot the hazard rate ± standard deviation (shading) of fixation breaks 
as a function of time from the offer (as in Figure 1c), with the rate shown separately for FP fill-in late 
(green curves) vs. FP fill-in with offer (black curves) sessions. Vertical and horizontal scale bars indicate 
0.5 hazard rate and 1 s duration, respectively.  

For all offer sizes, we observed no appreciable differences in the temporal profile of hazard rate 
depending on the timing of the FP fill-in cue. We concluded that the animal did not rely strongly on the FP 
fill-in cue in determining the timing of rejection responses. Nonetheless, regardless of FP timing, we 
observed a marked delay in hazard rates for the 0-reward offer compared to all other offers for both 
animals N and K (see Figure 1c and Supplementary Figure 2). The cause of this delay was unclear. The 
0-reward cue may have been less salient, contributing to slower reaction times. However, intuitively, the 
distinction between FP fill-in late vs. with offer would likely have been more salient, and yet the FP timing 
did not account for the slower responses to 0-reward offers. This suggested that a temporal component of 
the decision process was fundamentally different for zero vs. non-zero offers and argued for analyzing the 
timing of 0-reward offers separately (as was done for the Cox proportional hazards analysis in 
Supplementary Figure 2).  
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Anatomy 

 
Supplementary Figure 4. MRI localization. 
Anatomical MRI sequences were acquired with recording grid in place prior to physiological recording. 
(a,b) T2- or T1-weighted coronal slice is shown at the median anterior-posterior extent of recorded sites 
for monkey N (a) or K (b), respectively. Animal’s right side is shown on the left side of the image, per 
radiological convention. The inset shows an axial slice through the recording grid (white horizontal arrow), 
with a representative grid hole circled corresponding to grid position 2A or 0G (43.1 or 36.6 mm anterior 
to the interaural line, measured via intra-surgical stereotaxic coordinates; 6.7 or 6.3 mm left of midline, 
measured from the post-surgical MRI) for monkey N or K, respectively (see Supplementary Figure 6). 
Recording grid was filled with salinized agarose solution to facilitate contrast on MRI. By registering the 
axial slice through the recording grid and the coronal slice containing the selected grid position, we traced 
the virtual electrode trajectory from the bottom of the recording grid to the dorsal surface of cortex (vertical 
dashed white line), and then from the dorsal surface to the ultimate recording site (vertical solid white line) 
for individual electrode penetrations. We estimated position along the trajectory with a calibrated 
micromotor. Here we show the virtual trajectory to the most dorsal aspect of OFC reached by the 
representative grid positions (above): the fundus or lateral bank of the medial orbital sulcus at 14.5 or 
13.2 mm below the dorsal surface for monkey N or K, respectively. Note that the coronal slice prescription 
for monkey N was oblique to the coronal plane with the left hemisphere rotated anteriorly, accounting for 
the asymmetry in (a).   
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Properties of individual-unit contributions to low-dimensional representations 

 
Supplementary Figure 5. Contribution of individual units to low-dimensional representations. 
(a,b) Histogram of regression coefficients across the population that specified each unit’s contribution to 
the static low-dimensional representations (sRAs) of BENEFIT (left panel), CHOICE (middle panel), and 
EXPECTED REWARD (right panel) for monkeys N (a) and K (b). Distribution mean (gray arrow and text) and 
p-value (gray text) from two-tailed t-test of null hypothesis that mean = 0 (vertical dashed line) are shown. 
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Gaussian functions were fit to each distribution (black curves). Probability (black text) of null hypothesis 
that observed distribution was Gaussian was computed via two-tailed Kolmogorov–Smirnov test. No 
distribution differed significantly from Gaussian. (c,d) Histograms of difference between absolute value of 
regression coefficients for pairs of representations within the same unit (|BENEFIT| - |CHOICE|, left; |BENEFIT| 
- |EXPECTED REWARD|; middle; |CHOICE| - |EXPECTED REWARD|, right) are shown for monkeys N (c) and K 
(d). All conventions as in (a,b). No distribution of differences differed significantly from zero, i.e., the 
absolute strength of encoding did not differ for linear (i.e., benefit and choice) vs. non-linear (i.e., 
expected reward) variables, as observed in other prefrontal areas7 but not in parietal cortex, where linear 
terms were represented preferentially8. The encoding of linear vs. non-linear variables maps directly onto 
the concepts of linear vs. non-linear mixed selectivity, which confer distinct advantages for population 
decoding9. For present figure, all regression coefficients were found without orthogonalizing the sRAs.  
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Supplementary Figure 6. Anatomical distribution of sRA coefficients. 
The contribution of each unit to the low-dimensional representations (sRAs) of BENEFIT (a,d), CHOICE (b,e), 
and EXPECTED REWARD (c,f) are shown as a function of anatomical recording site for monkeys N (a-c) and 
K (d-f). Each pixel corresponds to an individual unit and the pixel color (referencing animal-specific color 
scale at left) indicates the value of the regression coefficient, i.e., the contribution of that unit to the 
corresponding sRA. Units (pixels) recorded from the same recording grid position (irrespective of 
electrode depth) are grouped together (roughly rectangular blocks) and, within each group, ordered (left 
to right, then top to bottom) by increasing values of the BENEFIT coefficient; the same order is preserved 
for the other sRAs. Blocks are arranged by corresponding 1 mm x 1 mm recording grid position from 
anterior to posterior (top to bottom rows) and medial to lateral (left to right columns). The grid row (letter) 
and column (number) labels are arbitrary. In panels (a,d), the coordinates of the grid position (2A or 0G 
for monkey N or K, respectively) referenced in Supplementary Figure 4 are labeled in mm anterior to the 
interaural line and left of midline. Note that the anterior-posterior coordinate was measured stereotaxically 
in reference to the center of the recording cylinder at the surface of the skull, ~30mm superior to the 
recording sites. Therefore, the AP coordinates of the actual recording sites may differ given small 
deviations in electrode trajectory in the coronal plane. In contrast, the left-right coordinate was measured 
in the MR images at the level of the recording site.  
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Supplementary Figure 7. Reliability of and correlation between low-dimensional representations.  
We generated S = 700 sampling datasets by randomly selecting Q of Q trials with replacement for each 
unit, and discovering the trio of non-orthogonalized sRAs independently for each dataset (Methods). To 
estimate the reliability of the sRAs, we computed the Pearson’s correlation r̃ii between sRAs for variable i 
Î {BENEFIT, CHOICE, EXPECTED REWARD} from all pairs of sampling datasets (i.e., for S datasets, we 
measured (S2 - S)/2 pairs per variable). (a,c) Histograms of r̃ii revealed very high reliability of the sRAs (r̃ii 
> 0.92 or 0.75 for monkey N (a) or K (c), respectively; Supplementary Table 2).  

We were interested in the separability between representations of distinct variables i and j Î 
{BENEFIT, CHOICE, EXPECTED REWARD}. We defined representations of i and j as separable when the 
correlation rij between sRAs for variables i and j was less than expected by chance given a null model in 
which representations of i and j were perfectly correlated (or anticorrelated, i.e., |r| = 1), but subject to 
imperfect reliability (i.e., independent noise), as estimated by r̃ii and r̃jj, thus resulting in an observed 
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absolute correlation of less than unity. We defined the null model empirically as r̃ij = ±'r̃ii'r̃jj (Methods) 
and took only the positive values. For display purposes only, we multiplied r̃ij by the sign z of the observed 
correlation rij (all statistical tests were performed on |rij| and r̃ij). (b,d) Histograms of the null model zr̃ij for 
monkeys N (b) and K (d) are shown for each pair of variables i and j and compared to the observed 
correlation rij (vertical dashed red line). For all pairs of variables, the between-variable correlations were 
found to be highly separable (i.e., |rij| < r̃ij via 1-tailed t-test, p < 10-16 (less than machine precision); 
Supplementary Table 2). 
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Activity of low-dimensional representations 

 
Supplementary Figure 8. Activity of low-dimensional representations aligned to offer and 
rejection.  
Neural responses R)* (which included the common-condition response; see Methods) were aligned to the 
time of the offer (a,c) or rejection (b,d) for monkeys N (a,b) and K (c,d) and projected onto the low-
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dimensional representations (sRAs) of BENEFIT (left panels), CHOICE (middle panels), and EXPECTED 
REWARD (right panels). The response for each combination of offer size (colors, see legend) and choice 
(accept or reject choices in thick or thin curves, respectively) is shown as a function of time.  

We examined these projections onto the sRAs (i.e., sRA activity) so as to interpret the gradual 
separation of CHOICE activity for accept and reject choices seen in Figure 4a,b. The slow dynamics could 
arise from underlying single-trial responses with similarly slow dynamics (i.e., “ramps”), or from single-trial 
responses with rapid changes in activity (i.e., “steps”), but for which the trial-average responses are 
temporally blurred due to trial-to-trial variability in the rejection time.  

By including the common-condition response and aligning to the offer (a,c), we again observed 
gradual separation of accept and reject responses for both animals. However, for monkey N, we now 
observed a rapid change in CHOICE activity that preceded the separation and therefore was common to 
accept and reject choices. In addition, the subsequent gradual separation was equally due to the slow 
recovery of the accept responses and not due exclusively to further divergence of the reject responses, 
as would be predicted if reject choices were associated with temporally blurred step-like dynamics. By 
aligning to the rejection (b,d), we observed a rapid change in the reject response after the rejection; 
however, this change was comparable in rate and magnitude to the offer-aligned change shared by 
accept responses, thus suggesting the rapid rejection-aligned dynamics were explainable by a common-
condition response to the offer (i.e., common to accept and reject choices) and not a rapid step-like 
response to the rejection.  

In contrast, for monkey K, we observed that the offer-aligned separation of accept and reject 
responses was primarily driven by a gradual change in the reject response (c). When aligning to the 
rejection (d), the dynamics of the reject response appeared qualitatively more rapid than when aligned to 
the offer, suggesting that the separation of accept and reject responses was likely driven by a rapid 
change in neural activity on reject trials that was likely temporally aligned to the time of the rejection.  

Taken together, the separation of CHOICE activity into accept and reject responses may derive 
from different sources for the two animals: a slowly evolving response to accept choices (i.e., ramp) in 
monkey N, whereas a rapid response to the rejection (i.e., step) in monkey K.  

In addition, we considered the apparent “bleed through” of offer size information onto the CHOICE 
sRA when aligning to the offer, particularly for reject choices (a,c, middle panels). Notably, the choice 
selectivity appeared increasingly offset in time for larger offers. As the median rejection times were later 
for larger offers (Supplementary Figure 2), this suggested that the apparent offer-selectivity was merely 
choice-selectivity arising at systematically later delays for larger offers. We tested this prediction by 
aligning to the time of rejection (b,d, middle panels), which would eliminate differential responses to offer 
size that were merely due to different rejection times. For monkey K, we observed no sensitivity to offer 
size (d), consistent with our prediction. However, for monkey N, the rejection-aligned responses showed 
less sensitivity to offer size than when aligned to the offer (b vs. a), but were still somewhat sensitive to 
offer, implying some overlap in the dimensions that represented benefit and choice mid-trial—overlap we 
examined specifically in Supplementary Figure 24. 

Finally, we considered the contribution of post-rejection gaze to differential accept vs. reject 
CHOICE activity. For monkey N, the fact that the choice discrimination was primarily due to changes from 
baseline on accept trials (a, middle panel, thick lines) suggested that gaze on reject trials played little role 
in differential CHOICE activity. Likewise, the lack of evidence for a post-rejection (i.e., post-saccadic) 
phasic, or step-like, response in monkey N, which might be expected if reject responses were highly gaze 
dependent, further argued against gaze-related activity driving differential CHOICE responses. However, 
for monkey K, the choice discrimination appeared to be driven by the reject responses and evidence for a 
post-rejection phasic response was stronger (discussed above); thus we could not exclude the role of 
post-rejection gaze in monkey K. 
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Supplementary Figure 9. Relating neural dynamics to decision dynamics. 
Here we relate the low-dimensional neural dynamics to the trial-level decision dynamics. Specifically, we 
reasoned that if the CHOICE sRA reflected the animal’s decision process, then the time at which it 
discriminated the animal’s choice should depend on the time at which the choice was rendered. Our serial 
recordings precluded a trial-by-trial analysis linking variation in sRA dynamics to choice timing, and so 
instead we compared sRA activity between trials stratified into either early or late choices. 
(a-d) The time course of the high-dimensional population activity projected onto the CHOICE sRA (i.e., 
CHOICE activity) is shown on separate panels for each offer size (colors, as labeled) and separated by 
accept and reject choices (thick and thin curves, respectively) for monkeys N (a,c) and K (b,d). Reject 
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choices are further separated by early and late rejections (solid and dashed curves, respectively), defined 
as occurring before or after, respectively, the median rejection time across all offers for each animal (0.92 
or 1.3 s, monkey N or K). In (a,b), the responses are aligned to the onset of the offer and mean-
subtracted (as in Figure 4a,b); in (c,d), the responses are aligned to the rejection but are not mean-
subtracted (as in Supplementary Figure 8b,d). Colored curves reflect activity of the subset of units with 
adequate trial counts for the present analysis (see below). For reference, the projections for all accept 
and reject trials from the full population are shown in thick and thin gray lines, respectively (identical to 
middle panels in Figure 4a,b or Supplementary Figure 8b,d).  

Aligning to the offer (a,b), the CHOICE activity diverged from accept choices (thick curves) at a later 
time for late than early rejections (dashed vs. solid color thin curves). For offers with too few early 
rejections to be observed separately, we compared late rejections and all rejections (dashed color vs. 
solid gray thin curves), which also showed a delayed divergence for later rejection times. This sensitivity 
of CHOICE activity on rejection time is consistent with our proposal that the sRA dynamics reflected the 
underlying decision dynamics. When aligning to the rejection (c,d), the CHOICE activity was virtually 
identical for early vs. late rejections both before and after the rejection, further supporting the thesis that 
the CHOICE sRA reflected the binary state of the animal’s decision at the time of the choice, independent 
of the time elapsed since the offer. As discussed in Supplementary Figure 8, we could not definitely 
exclude the contribution of post-rejection gaze to the differential CHOICE activity. However, we observed 
that the breaking eye movements were smaller for later rejections and for larger offers (not shown), 
consistent with accidental fixation breaks (see Figure 1c and related main text). Despite these overt post-
rejection behavioral differences between early vs. late rejections, they did not manifest as differences in 
the post-rejection CHOICE activity for early vs. late rejections, further reducing the likelihood that the 
CHOICE sRA reflected an indirect consequence of the decision, rather than the decision itself. 

The activity of the BENEFIT and EXPECTED REWARD sRAs is not shown for simplicity. In summary, 
activity of the BENEFIT sRA was virtually identical for early- and late-rejections. Though the animal’s initial 
valuation of the offer may have influenced rejection time (i.e., presumably later rejections reflected higher 
initial valuation), any differences in initial valuation were not reflected in the BENEFIT sRA activity, 
consistent with the lack of a choice predictive, post-offer signal in the single-neuron analysis 
(Supplementary Figure 11). The relationship between rejection timing and the EXPECTED REWARD activity 
was equivocal. However, to the extent that activity for late rejections differed from either early or all 
rejections, the late-rejection activity tended to hew more closely to the activity on the corresponding 
accept trials. This trend was consistent with EXPECTED REWARD encoding the animal’s real-time valuation 
that, in turn, informed how likely the animal maintained its initial behavioral policy to accept the offer. 
 
Condition and unit selection: 
As in the main text, certain conditions—now defined by offer, choice, and rejection time—had too few 
trials per unit to accurately estimate trial-average responses and were excluded. We required that a given 
condition have at least 5 trials per unit for that condition to be included, as in the main text. To preserve 
as many conditions as possible in the present analysis, we allowed for conditions that did not meet this 
minimum trial count for all units, but did meet the criterion for at least 85% of units. As such, we 
eliminated 2 of the original 9 conditions for monkey N (early rejections of 4- and 8-reward offers) and 2 of 
the original 8 conditions for monkey K (early rejections of 2- and 4-reward offers). (Recall that some 
conditions had already been eliminated for insufficient trial count in the main analysis.) Units not meeting 
the minimum trial count for one or more of the included conditions were eliminated: 16 of 68 units (24%) 
for monkey N and 73 of 342 units (21%) for monkey K.  

To allow for comparison with the main text, we preserved the CHOICE sRA coefficients from the main 
text. However, because we eliminated certain units in the present analysis, we effectively eliminated the 
corresponding dimensions from the sRA, necessarily reducing the magnitude of the new projections. To 
assess the impact on magnitude, we compared the accept trials between the full and pared-down 
populations (gray vs. color thick curves) and observed only a minor decrement. This decrement was 
markedly smaller than the difference between all rejections in the full population and either the early or 
late rejections in the pared-down population (gray vs. colored thin curves), meaning these differences 
between rejections in the full vs. pared-down populations were unlikely due to the changes in population 
membership. Note that the principal comparisons between accept choices, early rejections, and late 
rejections (colored curves), discussed above, were all within the pared-down population, and thus were 
not attributable to changes in population membership.  
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Supplementary Figure 10. Activity of low-dimensional representations including singleton offer for 
monkey N. 
We separately discovered the low-dimensional representations (sRAs) in a subpopulation limited to units 
recorded with the singleton offer for monkey N. (For monkey K, all units were recorded with the singleton 
offer, as shown in Figure 4b). As for monkey K, the singleton response was not included when computing 
the sRAs. We projected the population response onto the sRAs of BENEFIT (left), CHOICE (middle), and 
EXPECTED REWARD (right) for each offer size (colors, see legend) and accept and reject choices (thick and 
thin curves, respectively) as a function of time from the onset of the offer period (vertical black line). The 
response to the singleton offer (thick dashed red curve) was comparable to the value-matched, 8-reward 
non-singleton offer (thick solid red curve), consistent with the OFC population encoding the value and not 
visual properties of the stimulus. The animal rarely rejected the singleton offer, and so too few trials 
existed to analyze this condition.  
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Choice probability in individual units 

 
Supplementary Figure 11. Choice probability in individual units.  
We reasoned that if OFC activity were used by downstream circuits to estimate the value of a given offer, 
and that trial-to-trial fluctuations in value accounted for variability in choice of a given offer size, then we 
would expect trial-to-trial variation in OFC activity to predict the animal’s choice. Choice-predictive 
responses have been observed in sensory areas representing the sensory stimulus in perceptual 
decision-making studies10,11. However, evidence for robust choice-predictive responses in OFC has been 
equivocal12,13. We quantified the choice predictivity in OFC using the well-established choice probability 
(CP) metric, as described elsewhere10. Because our analysis of the population representations (i.e., sRAs 
and dRAs) relied on trial-average responses pooled across sessions (and thus could not exclude post-
rejection activity on single trials), we measured CP at the individual-unit level. 

Briefly, for each unit, we extracted the neural response r(t,T) in 250 ms non-overlapping time bins 
t aligned to the offer presentation on each trial T. So as to isolate responses predictive of an upcoming 
choice, we excluded trials for a given time bin in which the animal had rejected the offer prior to that time 
bin. Therefore, later time bins necessarily included fewer trials. To control for the known influence of offer 
size on the neural response, we z-transformed r(t,T) within each offer size (provided at least two trials 
were observed for a given offer and time bin) and combined responses across offers to give the 
normalized response R(t,T). We stratified R(t,T) according to the choice on trial T and compared the 
distributions of responses on accept vs. reject trials at each time bin t, which we quantified as the area 
under the receiver operator characteristic (ROC) curve, or equivalently, CP(t)—the probability of an ideal 
observer correctly classifying a trial as an accept choice given the neural response14. We eliminated time 
bins with fewer than 10 trials (across offers) contributing to either the accept or reject distribution. CP(t) = 
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0.5 indicated chance performance. Values significantly greater or less than 0.5 indicated the response 
was choice predictive, with higher firing rates predicting accept or reject choices, respectively.  

(a) The median CP(t) across units (i.e., ROC area; thick black curve) is shown as a function of 
time from the onset of the offer period for monkeys N and K (left and right panels, respectively). Gray 
shading indicates +/- the median absolute difference (i.e., median(|CP(t) – median(CP(t))|)). Note that the 
curves do not extend the full length of the trial because the later time bins had too few trials to include 
(i.e., most rejections had occurred by this time). In no time bin was CP(t) significantly different from 
chance by Wilcoxon signed rank test of null hypothesis that median CP = 0.5 (horizontal dashed-line), 
two-sided and Sidak-corrected for multiple time bins. 

The computation of CP required analysis of single-trial data so as to isolate responses occurring 
before the time of rejection, a time which varied across trials. In contrast, all population-level analyses, 
such as oTDR, depended on trial-average data so as to pool across serially recorded units. Thus, the 
choice predictive analyses were limited to individual units. In an effort to relate the above individual-unit 
analysis to the population-level analyses discussed in the main text, we compared CP(t) to the 
contribution individual units made to the population low-dimensional representations (sRAs). Specifically, 
we reasoned that units representing variation in value across offer sizes (as measured by their 
contribution to the BENEFIT sRA) may have represented trial-to-trial fluctuations in value within an offer 
size (as measured by CP), a relationship observed for other brain regions (e.g., in visual area MT, units 
encoding visual motion direction across different levels of motion strength also predicted the subject’s 
perceptual report within a given level of motion strength15). In addition, this hypothesis would address a 
second limitation of averaging CP across units. Namely, averaging assumed a common sign of choice 
predictive encoding (e.g., firing more before accept vs. reject choices), whereas the sign of encoding may 
have been heterogeneous across the population, which would be obscured by simple averaging. By 
relating CP to the encoding of offer size, we inferred the sign of within-offer value encoding (i.e., CP) from 
the sign of between-offer value encoding (i.e., coefficient for BENEFIT sRA). 

(b) Specifically, we computed the Spearman’s correlation coefficient (thick black curve and open 
circles, referencing left ordinate) between CP(t) for a given unit and the BENEFIT sRA coefficient 
corresponding to that unit as a function of time t from the onset of the offer period for monkeys N and K 
(left and right panels, respectively). The associated log10 probability p of observing the correlation 
coefficient by chance (thin gray curve; p-value from Matlab’s corr function, which uses the Fisher 
transformation of the correlation, one-sided, uncorrected) is plotted on the same panels and references 
the right ordinate. We marked as significant (filled circles) those time bins when p was less than a 0.05 
threshold after Sidak-correction for multiple comparisons across time bins (corrected p-threshold shown 
as gray horizontal dashed line). At no time was a significant correlation observed for monkey N, and only 
a single time bin was significant for monkey K (filled circle).  

In summary, individual units in OFC did not demonstrate choice predictivity. That is, on average, 
trial-to-trial variation in firing rate was not systematically related to trial-to-trial variation in choice. In 
addition, we did not observe a systematic relationship between a unit’s putative choice predictive signal 
(i.e., CP) and its contribution to the population’s encoding of offer value (i.e., BENEFIT sRA), with the 
exception of a single time bin for monkey K only. To address the question of choice predictivity in OFC, 
simultaneous recording of many units would be required to observe single-trial choice representations at 
the level of the population.  
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Sensitivity and specificity of the low-dimensional representations 

 
Supplementary Figure 12. Effect of temporal epoch on the sRAs. 
(a-f) The relevant and irrelevant signal variance (RSV and ISV, solid and dashed curves, respectively) are 
shown in columns 1 and 3, with associated log10 p-values in columns 2 and 4, for BENEFIT (green), CHOICE 
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(orange), and EXPECTED REWARD (blue) as a function of time from the onset of the offer period for 
monkeys N (columns 1-2) and K (columns 3-4). P-values were one-sided, uncorrected, and derived 
empirically in comparison to random dimensions (see Methods); horizontal gray dashed line shows p = 
0.05. Each row shows a separate implementation of oTDR with distinct temporal epochs for computing 
the sRAs (italicized headings). The colored horizontal bars at the top of each panel indicate the temporal 
epoch in which the color-matched sRA was computed. 

(a) The oTDR implementation used in the main text is shown, with BENEFIT computed in Epoch 1 
(corresponding to the offer period, 0 – 0.5 s) and CHOICE and EXPECTED REWARD computed in Epoch 2 
(corresponding to the work period, 0.5 s to end of the trial). The sRAs explained significantly large 
portions of relevant variance throughout the epoch in which they were computed and little variance 
outside that epoch (solid curves). In addition, the ISV (i.e., variance unrelated to the targeted variables; 
dashed curves) was generally very small and statistically insignificant; this was true across the various 
implementations of oTDR and is not further discussed. 

(b,c) We tested the impact on sRA sensitivity of extending the duration of Epoch 1 to either 1 s (b) or 
2 s (c), while shortening Epoch 2 accordingly. Extending Epoch 1 reduced the RSV explained by BENEFIT 
(green curves) and, particularly for the 2 s duration (c), marginally increased the RSV for CHOICE (orange 
curves). These changes were predicted from the dRA similarity analysis: the encoding of benefit was 
stable during the 0.5 s offer period, then changed abruptly (Figure 5c-f, left panels). Therefore, targeting 
an sRA exclusively to the 0.5 s offer period would more fully capture the available signal, whereas 
extending the epoch in which the sRA was computed would necessarily dilute the specificity of the 
resulting sRA for the time-limited representation, as the sRA would now reflect a compromise between 
two, highly dissimilar representations (corresponding to the periods marked with red and blue brackets in 
Figure 5e,f, left panels). Likewise, because the representation of choice did not emerge until ~1.5 s 
(Figure 5c-f, middle panels), targeting the CHOICE sRA exclusively to this temporal epoch (as in (c)) 
resulted in a marginally greater RSV. Nonetheless, in the case of the choice signal, the representation 
was highly stable for an extended period and was without a competing representation prior to this period. 
Thus the CHOICE sRA suffered very little by including, as in the main analysis, the roughly 1 s period (0.5 s 
~ 1.5 s) prior to the emergence of choice encoding. Despite these various quantitative effects of 
extending Epoch 1, the qualitative conclusions remained unchanged: the static sRAs of BENEFIT, CHOICE, 
and EXPECTED REWARD captured a high and statistically significant portion of variance related to their 
respective signals throughout the temporal epochs in which they were computed. 

(d) Next we considered the case of having no a priori assumptions about the timing or stability of the 
task-relevant representations. In this implementation, we computed all three sRAs within a single epoch 
spanning the entire trial. As expected, the maximum explanatory power of the BENEFIT sRA decreased, 
but remained significant and spanned a longer portion of the trial, consistent with pooling over different 
representations of benefit during different phases of the trial, as discussed above. The RSV for CHOICE 
was largely unaffected by use of a single temporal epoch, showing how oTDR is generally robust to 
inclusion of periods of non-coding activity (i.e., before 1.5 s). However, the RSV for EXPECTED REWARD 
was diminished, particularly in the last 1 ~ 2 s of the trial, where it dropped below the significance 
threshold. Note that in the single-epoch model (d), EXPECTED REWARD was forced to compete with BENEFIT 
to explain variance during a time when the two signals were correlated (see Supplementary Figure 24a,b, 
middle panels, showing similar dRAs for benefit and expected reward late in the trial). Therefore, the 
decrease in RSV for EXPECTED REWARD was likely due to the inclusion of the temporally overlapping 
benefit regressor during this later period, rather than due to the expansion of the epoch in which 
EXPECTED REWARD was computed (i.e., starting at 0 s instead of 0.5 s). This conclusion was further 
supported by the next two analyses (e,f)—by including a separate benefit regressor in Epoch 2, while 
maintaining the original duration of Epoch 2, the RSV for EXPECTED REWARD decreased compared to the 
original analysis (a).  

The single-epoch results (d) further justify computing the sRAs within time-limited epochs, in addition 
to our a priori rationale (see Methods) and relevant periods of stability in the dRA analysis (Figure 5). 
Nonetheless, even with minimal assumptions (i.e., computing all sRAs in a single, trial-spanning epoch), 
oTDR discovered statistically sensitive and specific representations of the task-relevant variables. 

Thus far, we have specified oTDR to assume that each task-relevant variable was represented in one 
and only one temporal epoch. However, in the general form of the objective function (Methods, Equation 
(6)), one may assume that any arbitrary set of variables was encoded in one or more of any arbitrary 
number of temporal epochs. Moreover, one may assume that any arbitrary subset of variable-by-epoch 
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representations were orthogonal with one another, while making no orthogonality assumptions about the 
remaining representations. In the final two implementations, we demonstrated this flexibility of oTDR as 
applied to the current dataset.  

As discussed, benefit was encoded by at least two distinct representations: during the offer (0 – 0.5 s) 
and after the offer during the work period (> 0.5 s) (Figure 5c-f, left panels, colored brackets). Here we 
use oTDR to explore this latter representation for two purposes.  

First, one may want to control for the overlap between benefit and expected reward encoding during 
Epoch 2 (as discussed above and shown in Supplementary Figure 24a,b, middle panels). In this case, 
one is not interested in the read-out of the mid-trial benefit signal, only controlling for its impact. In oTDR, 
we assume that sRAs are orthogonal because this guarantees that the readout (both for the experimenter 
and downstream circuit) is independent between sRAs. However, in the case of only controlling for the 
mid-trial benefit signal, we do not require a readout for mid-trial benefit and thus do not orthogonalize its 
representation. In (e), we show the results of a model that included a non-orthogonalized regressor for 
benefit in Epoch 2, in addition to the orthogonalized regressors that gave rise to the sRAs from the main 
text (i.e., BENEFIT in Epoch 1 and CHOICE and EXPECTED REWARD in Epoch 2). (Note that because 
coefficients from the mid-trial benefit regressor were not orthogonalized with respect to the sRAs, any 
variance-related metrics, i.e., RSV and ISV, for mid-trial benefit would not be independent of the sRAs 
and thus were not computed or plotted.) We found that including the mid-trial benefit regressor had 
virtually no impact on the BENEFIT and CHOICE sRAs, but reduced the explanatory power and statistical 
significance of EXPECTED REWARD, particularly late in the trial for monkey N and throughout the trial for 
monkey K. As discussed above, this was likely due to the similarity of benefit and expected reward 
representations late in the trial (Supplementary Figure 24a,b). By removing the orthogonality constraint, 
the mid-trial benefit representation would have an advantage over the EXPECTED REWARD sRA, which had 
to remain orthogonal with the other sRAs, in competing for shared variance. Thus, this implementation of 
oTDR was the most conservative in addressing the specific concern of misattribution of variance related 
to benefit late in the trial.  

Second, one may have a functional interest in the mid-trial benefit representation, such as 
considering how the early and mid-trial benefit representations maybe readout independently by 
downstream circuits. To test this hypothesis, we implemented oTDR using the same regressors as in (e), 
only now we assumed that the mid-trial benefit representation was orthogonal to the other sRAs (and 
likewise discovered a dedicated MID-TRIAL BENEFIT sRA). As shown in (f), this model discovered sRAs that 
were virtually identical to those from the previous non-orthogonalized model (e), except that now the RSV 
for EXPECTED REWARD in monkey K was both larger and significant for the first 3.5 s of the work period. 
This rescue of EXPECTED REWARD was due to the fact that the competing mid-trial benefit regressor now 
had to abide the orthogonality constraint along with the other sRAs. Note that this did not confer any 
special advantage for EXPECTED REWARD to explain this variance; that is, if the mid-trial variance were 
more related to offer size, then it would be explained by the MID-TRIAL BENEFIT sRA, leaving EXPECTED 
REWARD to explain little to no variance. Finally, we now also observe the MID-TRIAL BENEFIT sRA (f, thick 
green curve), which explained a significant portion of benefit information from just after the offer (0.5 s) to 
the middle (monkey K) or end (monkey N) of the trial, as anticipated from the dRA analysis (Figure 5c-f, 
left panels). The original BENEFIT sRA (computed during 0 – 0.5 s) is now shown by the thin green curve.  
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Supplementary Figure 13. Variance explained by low-dimensional representations. 
Figure 4c,d plotted the extent of relevant and irrelevant signal variance, which were functions of the 
overall variance explained, now shown here for completeness. (a,b) The percentage of variance 
explained (i.e., cross-condition variance of the projection onto a given sRA normalized by the cross-
condition variance across all dimensions) by the sRAs of BENEFIT (green curve), CHOICE (orange curve), 
and EXPECTED REWARD (blue curve) is plotted as a function of time from the onset of the offer period 
(black vertical line) for monkeys N (a) and K (b). The area of gray shading represents the variance 
explained by 95% of random vectors reflecting the dimensionality of the data. To estimate the upper-
bound for variance explained any single, time-varying dimension (note that the sRAs were static, in 
contrast), we performed principal component analysis independently at each time bin and plotted the 
variance explained by the top component (black dotted curve). (c,d) We computed the one-sided, 
uncorrected probability, P(V), of observing the percent variance explained by chance based on the 
distribution of variance explained by the set of random vectors. We plotted log10 P(V) for each sRA (colors 
as in a,b) as a function of time from the onset of the offer period (black vertical line) for monkeys N (c) and 
K (d). For monkey K, P(V) at times 0.25 and 0.35 s was less than machine precision, and the values were 
replaced with the precision floor value. The threshold P = 0.05 is plotted (horizontal dashed line) for 
reference.  
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Supplementary Figure 14. Specificity of low-dimensional representations. 
We were interested in the specificity of the low-dimensional representations, that is, the extent to which 
the sRAs explained variance related to the targeted variable of interest and not related to off-target 
variables. For each sRA, we computed the portion of variance explained that was related to each of the 
three variables (see Methods, on- and off-target RSV), thereby generating three RSV values for each 
sRA at each time bin. (a,b) The RSV explained by the sRAs of BENEFIT (left panel), CHOICE (middle panel), 
and EXPECTED REWARD (right panel) is plotted (solid colored curves) as a function of time from the onset of 
the offer period (vertical black line) for monkeys N (a) and K (b). Colors refer to the variable with respect 
to which the RSV was computed: benefit (green), choice (orange), and expected reward (blue). The on-
target RSV is shown in thick curves (e.g., the variance explained by BENEFIT that was related to the 
benefit variable is shown in left panel in thick green curve) and recapitulates Figure 4c,d. Off-target RSV 
is shown in thin curves.  
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The overall variance explained (V; dotted black curve) recapitulates the curves in Supplementary 
Figure 13a,b and served as an upper-bound for RSV explained. When the difference between V and RSV 
was zero, the sRA was perfectly specific to the on-target variable. Any lack of specificity of the sRA (i.e., 
irrelevant signal variance; Figure 4c,d, dashed curves) must have arisen within the difference between V 
and RSV. The RSV with respect to the off-target variables depended on the correlations between the 
variables themselves, which ranged as high as Pearson’s r = 0.86 for expected reward and benefit for 
monkey K. For an intuition, if the correlation between variables A and B were r = 1, then the RSV with 
respect to A and B would be equal. To address the correlation between variables, we used semi-partial 
correlation to compute the off-target RSV with respect to off-target variable q that would be expected 
given the correlation rkq between q and on-target variable k (see Methods). The off-target RSV (thin 
colored curves) is plotted in (a,b), where the color indicates the off-target variable q with respect to which 
the RSV was computed.  

(c,d) The probability (one-sided, uncorrected) of observing on- and off-target RSV (thick and thin 
curves, respectively) by chance is plotted for monkeys N (c) and K (d), where panels and colors are as in 
(a,b). Probabilities were derived from empirical null distributions of on- and off-target RSV (see Methods). 
The area of gray shading represents P(RSV) > 0.05. 

In general, on-target RSV closely approached the upper-bound V, indicating high-specificity of the 
sRAs. In addition, the probability of observing the on-target RSV by chance was less than 0.05 during key 
task-relevant periods (discussed in main text). The off-target RSV was generally very small and below 
chance levels. However, for both animals, EXPECTED REWARD explained significant variance related to 
benefit from 1 ~2 s after the offer (thin green curve, right panels). This leak of variance related to benefit 
onto EXPECTED REWARD suggested that the transformation from encoding of pure benefit to encoding of 
benefit conditioned on choice (i.e., expected reward) was not instantaneous, but rather evolved gradually 
during and just after the period when the animals rendered most of their choices, as can be observed in 
the trial-average responses projected onto EXPECTED REWARD (Figure 4a,b, bottom panels), which 
separate rapidly by offer size in the first second after the offer and prior to when they additionally separate 
by choice. Of note, the lack of benefit information explained by the BENEFIT sRA during this time (thick 
green curve, left panels) indicated that the residual benefit information during the transformation was in a 
direction orthogonal to BENEFIT, consistent with the reduced sensitivity of BENEFIT during this time (see 
Supplementary Figure 15). The cross-talk between benefit and expected reward information was distinct 
from the leak of benefit information onto CHOICE mid-trial, as also observed in Figure 4a,b (middle panels) 
and discussed in the main text.  
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Supplementary Figure 15. Sensitivity of low-dimensional representations. 

We were interested in the sensitivity of the static regression axes (sRAs) to the encoding of the 
task-relevant variables at the individual-unit level. That is, how much of the encoded information available 
in the population at large was captured by the low-dimensional, static space spanned by the sRAs? We 
reasoned that the dynamic regression axes (dRAs) discovered the best linear representation of the 
variables at each time bin, and thus could be used to quantify the available momentary information. 
However, the approach most analogous to our prior analyses (i.e., projecting the neural data onto the 
RAs and measuring the variance explained) was not possible for the dRAs because the axes were non-
orthogongal, and thus the projection onto a given dRA would necessarily contain off-target variance 
related to the other variables. Instead, we relied on the fact that the vector magnitude ||dRAk(t)||, as 
defined in the high-dimensional space and prior to vector normalization, was proportional to the degree of 
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neural representation of variable k at time t relative to the other variables and time bins (recall that 
predictors were scaled and centered and neural responses were mean-centered). In addition, we 
reasoned that the extent to which dRAk(t) aligned with each sRA, or with the low-dimensional space 
spanned by all three sRAs, was proportional to the sensitivity of the sRA(s) for variable k at time t. 
Therefore, we projected dRAk(t) onto each sRAi (i,k Î {benefit, choice, expected reward}) and measured 
the resulting magnitude, 𝑧!,#(𝑡). When 𝑧!,#(𝑡) approached ||dRAk(t)||, then sRAi captured a high proportion 
of the available information about variable i at time t, i.e., it was sensitive to variable i. We measured 
𝑧!,#(𝑡) both for the on-target variable (i.e., i = k), as well as for the off-target variables (i.e., i ¹ k), which 
indicated the extent to which sRAi was sensitive to the other variables.  

(a) We plotted 𝑧!,#(𝑡) as a function of time t from the onset of the offer period (vertical black line) 
for each dRAk(t). Within the left (monkey N) or right (monkey K) set of three columns, the left, middle, and 
right panels correspond to k = benefit, choice, and expected reward, respectively. Line color corresponds 
to the sRAi onto which the dRA was projected (sRAs of BENEFIT, CHOICE, and EXPECTED REWARD plotted in 
green, orange, and blue, respectively). Thick or thin colored lines indicate the on- or off-target variable 
(i.e., k = i or i ¹ k), respectively. For reference, the magnitude of dRAk(t) in the high dimensional space—
an upper-bound for 𝑧!,#(𝑡)—is shown in gray curves. 

Qualitatively, it appeared that the sRAs captured a high proportion of available information about 
their targeted variable (i.e., thick colored curves approached gray curves), at least for portions of the trial. 
However, we sought to quantify the extent to which the sRAs did not capture the available information 
and to compare this extent to that expected for an arbitrary trio of static dimensions. As such we 
computed the difference 𝑑!,#(𝑡) = ||dRAk(t)|| – 𝑧!,#(𝑡), or the population encoding of variable k undetected 
by sRAi. We developed a statistical null model for 𝑑!,#(𝑡) by generating S random sets of three orthogonal 
vectors (i.e., null sRAs) biased to the dimensionality of the data using the same biased sampling method 
as for single vectors (Methods). We then projected dRAk(t) onto each null sRA from a given random set, 
computed the null magnitude �̂�!,#(𝑡) and corresponding null difference 𝑑1!,#(𝑡), and compiled across 
random sets so as to ultimately generate a null distribution d3!,#(𝑡) of undetected information. Because the 
null sRAs were generated without regards to the variables of interest, there was no a priori pairing 
between dRAk(t) and a given null sRA. Therefore, we designated the null sRA most aligned to the 
dimension of greatest variance in the data as the “on-target” null sRA and used this null sRA to compute 
𝑑1!,#(𝑡) for i = k. (This designation was the most conservative approach, i.e., produced the smallest null 
differences 𝑑1 and thus was most likely to identify a given observed difference 𝑑 as statistically large). The 
undetected information about off-target variables (i.e., 𝑑1!,#(𝑡) for i ¹ k) was of less interest, and so the 
remaining two null sRAs were assigned arbitrarily to the remaining two “off-target” variables. (However, 
below we summed 𝑑1!,#(𝑡) across all null sRAs i for computing 𝐷5!,#(𝑡).)  

(b) The difference 𝑑!,#$!(𝑡) is shown for the on-target variables in thick curves following the same 
color and column conventions as in (a). The 50th and 99th percentiles of the corresponding null distribution 
d3!,#$!(𝑡) are provided for reference (dashed and dotted curves, respectively).  

Finally, we computed the probability pk,i(t) of obtaining the observed 𝑑!,#(𝑡) or greater by chance 
as the upper-tail of d3!,#(𝑡) from 𝑑!,#(𝑡) to ∞. (Note that we integrated d3!,#(𝑡) numerically, and thus p was 
lower-bounded at 1/S.) When pk,i(t) was sufficiently large, we concluded that the amount of encoded 
information undetected by sRAi was no more than expected by chance.  

(c) We plotted log10 pk,i=k(t) for the on-target variable (one-sided, uncorrected, derived empirically 
in comparison to null distribution d3!,#(𝑡), described above) using the same color and column conventions 
as in (a) and labeled the threshold p = 0.01 (horizontal dashed line) for reference.  

We observed that CHOICE and EXPECTED REWARD generally detected a consistent proportion of 
available population encoding (i.e., consistent spacing between thick colored and gray curves, (a)), 
suggesting that the observed dynamics of RSV(t) or V(t) (see Figure 4c,d or Supplementary Figure 13a, 
respectively) were due to changes in the magnitude of the dynamic representation (i.e., ||dRAk(t)||), not 
due to changes in the direction of representation. Conversely, for BENEFIT, we observed both a decrease 
in the dynamic representation magnitude with time (i.e., decrease in gray curve, (a)) and a decrease in 
the proportion of detected population representation (i.e., increase in difference 𝑑!,#(𝑡), (b)), suggesting 
that the representation of benefit was dynamic both in magnitude and direction (i.e., contributions of 
individual units). For all sRAs at all times, the magnitude of undetected encoding of the on-target variable 
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(i.e., 𝑑!,#$!(𝑡)) was less than expected by 99% of random sRAs (c). In other words, the high sensitivity of 
a given sRA at key task-relevant times (e.g., early for BENEFIT, late for CHOICE) did not compromise the 
ability of the sRA to detect the encoding of that variable at other times in the trial, as compared to any 
arbitrary trio of static dimensions. 

(d) We were also interested in how well the entire static three-dimensional (3-D) subspace 
spanned by the sRAs captured the dynamic representations. As such, we measured the magnitude Zk(t) 
of the projection of dRAk(t) into the 3-D space, taken as the vector norm '∑ 𝑧!,#(𝑡)%#  across sRAs i (recall 
that the sRAs were orthogonal). We plotted Zk(t) (black curve) as a function of time and included the 
magnitude of dRAk(t) in the high-dimensional space (gray curve) as an upper-bound for Zk(t). 

Like for the individual sRAs, we measured the extent of information uncaptured by the 3-D space 
as the difference, 𝐷!(𝑡) = ||dRAk(t)|| – 𝑍!(𝑡), between the magnitudes of the dRA in the high-D and 3-D 
spaces. Likewise, to generate a null model, we computed the difference, 𝐷5!(𝑡), between ||dRAk(t)|| and 
the magnitude 𝑍1!(𝑡) of dRAk(t) projected into the subspace of three orthogonal random vectors 

(e) The difference 𝐷!(𝑡) (thick solid black curves) and 50th and 99th percentiles of D5!(𝑡) (dashed 
and dotted gray curves, respectively) are plotted. As above, we computed the probability Pk(t) of obtaining 
𝐷!(𝑡) or greater by chance as the upper-tail of D5!(𝑡) from 𝐷!(𝑡) to ∞.  

(f) We plotted log10 Pk(t) (one-sided, uncorrected, derived empirically in comparison to null 
distribution D5!(𝑡), described above) and labeled the threshold P = 0.01 (horizontal dashed line).  

The static, 3-D space captured a high proportion of the population encoding of the task-relevant 
variables (black curves are close to gray curves, (d)). Exceptions tended to occur during periods of lower 
absolute representation (i.e., smaller ||dRAk(t)||), such as the representation of benefit or choice late or 
early in the trial, respectively. However, we noted that the proportion of available expected reward 
representation captured by the low-dimensional space was considerably lower than for the other task-
relevant variables, including during periods of relatively large dynamic representation. Statistically, for all 
variables at all times, the magnitude of undetected encoding (i.e., 𝐷!(𝑡)) was less than expected by 99% 
of random sets of sRAs (f). In other words, the static low-dimensional space, in addition to representing 
the variables of interest at key times, was no worse than chance at capturing the available population 
encoding of the variables across all times in the trial. 

Though not its intention, the present analysis afforded an alternative measure of specificity to 
complement Supplementary Figure 14. The extent of information about a given variable captured by the 
low-dimensional space was generally captured by the sRA specific to that variable (i.e., thick curves 
greater than thin curves, (a)). An exception was the dynamic representation of benefit (a, left panels), 
which was captured by BENEFIT early in the trial but by CHOICE and EXPECTED REWARD in the mid-to-late 
trial. This cross-talk reflected the co-alignment between benefit and choice or expected reward 
representations mid-trial (see Supplementary Figure 24 for alignment between dRAs).  
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Principal component analysis 

 
Supplementary Figure 16. Variance explained by principal components. 
Principal components analysis (PCA) provided an alternative, traditional approach to dimensionality 
reduction. We compared the low-dimensional space spanned by the sRAs to that spanned by the top 
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three principal components (PCs), as discovered by PCA on variance across time and conditions in the 
high-dimensional space. As with oTDR, the analysis was performed on z-transformed, common condition-
subtracted responses, R*, which were reshaped to matrix form with rows (dimensions) corresponding to 
units and columns (observations) corresponding to concatenation of time bins and conditions.  

(a,b) Variance explained by PC1 (thick solid curve), PC2 (medium solid curve), and PC3 (thin solid 
curve) is shown as a function of time from the onset of the offer period (black vertical line) for monkeys N 
(a) and K (b). The area of gray shading represents the variance explained by 95% of random vectors (see 
Methods), and the black dotted curve represents the variance explained by the top PC from a separate 
analysis in which we performed PCA independently at each time bin to estimate the upper-bound for the 
variance explained by any single, time-varying dimension. Compared to the sRAs (Supplementary Figure 
13), the PCs explained less peak variance early in the trial and moderately greater variance toward the 
end of the trial.  

However, the variance explained by the top PCs was not necessarily related to the variables of 
interest. To address the specificity of the PCs, we computed the relevant signal variance (RSV) explained 
by each PC with respect to the variables of interest. Because the PCs were not targeted to specific 
variables a priori, we designated as “on-target” the variable for which the cumulative RSV (summed 
across time bins) was greatest: choice for PC1 and benefit for PC2 and PC3 

 (c,d) The on- and off-target RSV (thick and thin solid curves, respectively) explained by PC1 (left 
panel), PC2 (middle panel), and PC3 (right panel) is plotted as a function of time from the onset of the offer 
period (vertical black line) for monkeys N (c) and K (d). Colors refer to the task-relevant variables with 
respect to which RSV was computed: benefit (green), choice (orange), and expected reward (blue). The 
overall variance (V) explained by each PC (thin black dotted curve) recapitulates the solid curves in (a,b) 
and served as an upper-bound for RSV. Any lack of specificity of a given PC for a given variable arose 
within the difference between V and on-target RSV. We quantified the portion of variance related to the 
“off-target” variables (i.e., the two variables not designated as on-target) as the off-target RSV, the 
computation of which controlled for the correlation between on- and off-target variables (see Methods and 
Supplementary Figure 14).  

(e,f) The log10 probability (one-sided, uncorrected) of observing on- and off-target RSV (thick and 
thin curves, respectively) by chance for monkeys N (c) and K (d) were derived from empirical null 
distributions of on- and off-target RSV (see Methods), where panels and colors are as in (c,d). The area 
of gray shading represents p > 0.05. 

Compared to the sRAs (Supplementary Figure 14), the top PCs were less specific to any given 
variable of interest (i.e., greater difference between V and on-target RSV, (c,d)). Moreover, the variance 
explained by the PCs that was unrelated to the on-target variable was not merely irrelevant to the task, 
but rather was significantly related to the off-target variables (e,f), for example: PC1 explained significant 
RSV with respect to choice (primarily) but also benefit and expected reward (left panels, thin green and 
blue curves), PC2 explained significant RSV with respect to benefit (primarily) but also choice for monkey 
N (middle panel, thin orange curves), and PC3 explained significant RSV with respect to benefit (primarily) 
but also expected reward for monkey K (right panel, thin blue curves). Finally, the sensitivity for a given 
variable of interest was spread between PCs. In particular, benefit was represented significantly and most 
greatly by PC2 and PC3, rather than consolidated onto a single dimension, as by the BENEFIT sRA. In 
summary, compared to the sRAs, any given PC was less sensitive and specific to a particular variable of 
interest, and thus, as a whole, the set of PCs less well separated the task-relevant signals into low-
dimensional representations specific to each variable.  
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Common condition response 

 
Supplementary Figure 17. Common condition response. 
For monkeys N (a-d, i-k) and K (e-h, l-n), we examined the common-condition response (CC), i.e., the 
mean response across conditions taken at each time bin, and compared the CC to the condition-specific, 
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mean-subtracted response R*. In particular, we were interested in identifying the subspace that captured 
the CC response and in measuring its overlap with the subspace that captured the task-relevant 
variables, particularly since the CC response is often a primary source of variance, which a downstream 
readout must distinguish in order to decode the task-relevant signals. We performed principal component 
analysis (PCA) on the CC (units x time bins), thus discovering the top three principal components (CC 
PCs) that captured the greatest temporal variance (i.e., variance across time bins). The projection of the 
CC onto a given dimension reflected the activity of that dimension (as in Figure 4a,b).  

(a,e) The CC activity of the common-condition PCs—CC PC1 (thick curve), CC PC2 (medium 
curve) and CC PC3 (thin curve)—and (c,g) CC activity of the sRAs—BENEFIT (green curve), CHOICE 
(orange curve), and EXPECTED REWARD (blue curve)—are shown as a function of time from the onset of 
the offer period (vertical line). Likewise, we projected the condition-specific response R* onto (b,f) CC PCs 
1, 2 or 3 and (d,h) sRAs BENEFIT, CHOICE, or EXPECTED REWARD (left, middle, or right panels, respectively), 
plotted for each combination of offer size (colors, see legend) and choice (accept or reject choices in thick 
or thin curves, respectively).The magnitudes of the projections are in arbitrary units related to the z-
transformed firing rates but are comparable between dimensions (i.e., CC PCs vs. sRAs) and animals. 
The projections of R* onto the sRAs (d,h) are identical to those in Figure 4a,b, and are recapitulated here 
to facilitate comparison to projections onto the CC PCs (b,f). 

We examined the extent to which the various low-dimensional subspaces captured temporal 
variance. Qualitatively, the range of the CC response over time was greater when projected onto the CC 
PCs than onto the sRAs (a vs. c and e vs. g; note different scale of ordinates), suggesting the CC PCs 
captured greater temporal variance than the sRAs. (i,l) To test this explicitly, we measured the percent of 
temporal variance (bar height) explained by each of the CC PCs, sRAs, and, for completeness, the 
condition-sensitive principal components (PCs; discovered in matrix R*&' and described in Supplementary 
Figure 16), where black, gray, and white bars refer to the first, second and third PC or CC PC, and green, 
orange and blue bars refer to the sRAs of BENEFIT, CHOICE, and EXPECTED REWARD, respectively. Indeed, 
the CC PCs explained markedly greater temporal variance than the PCs or sRAs. 

In contrast, when projecting the condition-specific neural response (i.e., R*) onto the various 
dimensions, the range of magnitudes for the CC PCs (b,f) was less than for the sRAs (d,h), suggesting 
the CC PCs captured less cross-condition variance (i.e., variance across conditions at each time bin) than 
the sRAs. In addition, the extent to which the CC PCs discriminated the variables of interest (i.e., orderly 
separation of projections by offer size and/or choice) was qualitatively less than for the sRAs. (j,m) 
Indeed, the cross-condition variance explained by CC PC1 (thick curve), CC PC2 (medium curve) and CC 
PC3 (thin curve) was less than expected by 95% of random vectors reflecting the dimensionality of the 
data (gray shading) and less than explained by the sRAs (compare to Supplementary Figure 13a,b). (The 
present figure compares variance explained for individual dimensions across the three static subspaces; 
see Supplementary Figure 18 for comparison of the subspaces as a whole.) 

Finally, we were interested in directly comparing the magnitudes of temporal and cross-condition 
variance in OFC. That is, were the condition-specific responses dwarfed by the time-varying, common-
condition response, or were these two sources of variance comparable? Qualitatively, the range of 
magnitudes of the projections of the CC onto the CC PCs (a,e) was comparable to that of R* onto the 
sRAs (d,h), suggesting that condition-independent and condition-specific responses were of similar 
magnitude in OFC. To test this hypothesis more rigorously, for each unit n, we computed the temporal 
variance for each condition c from the z-transformed, trial-average responses 𝑅;<((𝑐, 𝑡), which contained 
the CC, and took the median variance across conditions. Separately, for each unit, we computed the 
cross-condition variance of 𝑅;<((𝑐, 𝑡) at each time bin and computed the median variance across time bins. 
(k,n) We plotted the median temporal (abscissa) and cross-condition (ordinate) variance for each unit 
(circles) in terms of standard deviations from the unit’s mean response across all times and conditions. 
Points below the unity line (black diagonal) indicated greater temporal than cross-condition variance. The 
pairwise difference of temporal minus cross-condition variance was significantly greater than zero for the 
population (median = 0.10 or 0.07 and p = 0.0075 or 2.5 * 10-15 via two-sided Wilcoxon signed-rank test, 
monkey N or K, respectively), indicating greater temporal than condition variance. However, the extent of 
this difference was small: less than 0.1 s.d. on average and always less than 1 s.d. Thus, we concluded 
that OFC responses exhibited marginally but significantly greater temporal than condition variance.  
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Supplementary Figure 18. Variance explained by 3-D subspaces. 
We were interested in comparing the explanatory power of the previously discussed 3-dimensional 
subspaces—static regression axes (sRAs; left panels; see Figure 4 and Supplementary Figure 13), 
principal components (PCs; middle panels; see Supplementary Figure 16), and common-condition 
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principal components (CC PCs; right panels; see Supplementary Figure 17)—as a whole, instead of just 
their component dimensions examined separately.  

(a,b) Cross-condition variance or (c,d) relevant signal variance (RSV) explained by a given 3-D 
subspace (as summed over the three contributing orthogonal dimensions) is plotted as a function of time 
from the onset of the offer period (vertical black line) for monkeys N (a,c) and K (b,d). The mean variance 
or RSV across time bins is indicated in the top right of each panel. For RSV, line color refers to the task-
relevant variable with respect to which RSV was computed: benefit (green), choice (orange), and 
expected reward (blue).  

In terms of variance (a,b), the PCs explained the greatest mean variance, as expected by the 
design of principal components analysis. However, the variance explained by the sRAs was nearly as 
great on average and greater at peak time bins, consistent with a high proportion of variance in the neural 
population as a whole being related to the task-relevant variables. In contrast, the subspace capturing 
temporal variance, as defined by the CC PCs, explained much less of the cross-condition variance, 
consistent with the temporal and cross-condition variances occupying largely non-overlapping subspaces 
(see Supplementary Figure 17). 

In terms of RSV (c,d), the comparison between the sRAs and PCs was similar as for variance 
explained. However, the mean RSV explained by the sRAs was even closer to and at times exceeded the 
mean RSV explained by the PCs, consistent with the greater sensitivity of the sRAs to the task-relevant 
variables, despite the marginally greater overall variance explained by the PCs.  

Note that we summed RSV across sRAs without controlling for correlations between the 
variables, in contrast to our prior analyses that used partial correlation to compute RSV for off-target 
variables (Supplementary Figure 14). As a result, at a given time, the total RSV across variables 
explained by the 3-D subspace (i.e., sum of the three colored lines in (c,d)) could exceed the variance 
explained by the same subspace (a,b). We emphasize that, for a given dimension, RSV was always 
bounded by variance explained, and likewise the sum of RSV for a given variable across dimensions was 
bounded by variance explained summed across those same dimensions.  

In addition to comparing the variance explained by the various subspaces, we compared their 
overlap directly as measured by the alignment index (Methods), which ranged from 0 to 1. The overlap 
between the sRA and PC subspaces was high (alignment index = 0.84 or 0.65, monkey N or K, 
respectively), consistent with the OFC population being primarily modulated by the task-relevant 
variables. In contrast, the overlap between the sRA and CC PC subspaces was small (alignment index = 
0.23 or 0.11, monkey N or K, respectively), consistent with the relative specificity of the CC PCs or sRAs 
for temporal or cross-condition variance, respectively.    
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Stability of dynamic representations 

 
Supplementary Figure 19. Probability of pairwise similarity between dynamic representations. 
(a,b) The log10 probability of observing by chance the similarity q between each pair of dynamic low-
dimensional representations (dRAs; see Figure 5) is given by the pixel color (referencing right-sided color 
scale), and the times of the dRA pair (relative to the onset of the offer period) are given by the pixel’s row 
and column positions for task-relevant variables of benefit (left column), choice (middle column), and 
expected reward (right column) for monkeys N (a) and K (b). The diagonal compares identical dRAs (q = 
0, p(q) = 1) and is colored gray.  
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Supplementary Figure 20. Boxcar functions fit to angle between dynamic representations. 
(a,b) The time-varying angle q between pairs of dynamic low-dimensional representations (dRAs) for the 
task-relevant variables of benefit (left column), choice (middle column), and expected reward (right 
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column) are shown for monkeys N (a) and K (b). Each black trace indicates 90° – q (such that higher 
values correspond to greater similarity) between reference dRA(t), or dRA*, taken at time t and all other 
dRA(t+dt) taken at temporal offset dt relative to dRA*. The absolute trial time of dRA* is given by the row 
position of the black trace from early (top) to late (bottom) in the trial (center of time bin for first and last 
dRA* is labeled) and corresponds to the rows in Figure 5c,d. The spacing between black traces is 
arbitrary and for display purposes only. Black traces are aligned horizontally to the time of dRA* 
(downward arrow) and are redacted at this time (white space) since the comparison of dRA* with itself 
was necessary 90° – q = 90°. Boxcar functions (red traces) were least-squares fit to the black traces, 
excluding the time of dRA* and times before the offer (i.e., excluding t < 0). The width of the boxcar 
function indicated the putative period of stability and the boxcar height indicated the magnitude of 
similarity, as depicted in Figure 5e,f. Horizontal and vertical scale bars indicate trial time and dRA 
similarity (i.e., 90° – q), respectively.  
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Supplementary Figure 21. Boxcar parameters and statistics. 
The parameters and statistics of the boxcar functions fit to the angle between dynamic low-dimensional 
representations (dRAs) for task-relevant variables of benefit (left column), choice (middle column), and 
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expected reward (right column) are shown for monkeys N (a,b,c) and K (d,e,f). Boxcar fits were used to 
discover putative periods of stability with respect to a reference dRA* and adjacent dRAs (Supplementary 
Figure 20) and the associated parameters are shown as a function of the time of the reference dRA* 
relative to the onset of the offer period. (a,d) The boxcar height qboxcar, i.e., magnitude of similarity, is 
plotted (open or filled circles) as 90° – qboxcar (i.e., larger values indicate greater similarity). In all panels (a-
f), filled circles indicate that the probability p of observing qboxcar by chance was p(qboxcar) < 0.01, as 
computed from the distribution of chance angles 𝜃3boxcar between surrogate dRAs (Methods). The median 
(gray circles) and 99th-percentile (gray triangles) of the null distribution 𝜃3boxcar is shown for each time bin. 
(b,e) The boxcar width, i.e., duration of similarity, is plotted. (c,f) The log10 probability p(qboxcar) (one-sided, 
uncorrected) was derived empirically in comparison to the distribution of chance angles 𝜃3boxcar (see above 
and Methods) and is plotted here (also shown by color of vertical bands to left of the heat maps in Figure 
5e,f). Filled triangles indicate p < 10-4, which occurred when qboxcar was less than all 10,000 values of 
𝜃3boxcar. The arbitrary threshold of p = 0.01 (dashed horizontal line) appeared to discriminate categorically 
distinct ranges of p(qboxcar), justifying use of this threshold for display purposes (e.g., Figure 5e,f). 
However, the periods of putative stability were not consistently below this threshold. In particular, p(qboxcar) 
for monkey K expected reward ((f), right panel) hovered around the significance threshold. In addition, the 
stability magnitude during these periods ((d), right panel, note smaller ordinate scale) was likewise 
smaller than for other variables.   
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Supplementary Figure 22. Effect of varying model parameters on stability analysis. 
(a-e) For monkeys N (left 3 columns) and K (right 3 columns), the stability of the dynamic low-dimensional 
representations (dRAs) of benefit, choice, and expected reward is shown (left, middle, and right columns, 
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respectively, for a given animal) for separate implementations of the dRA analysis. Each pair of rows 
corresponds to a separate analysis using distinct parameters (italicized headings). Conventions are as in 
Figure 5. In brief, for a given pair of rows, the top row (heatmaps) shows the angle q in degrees between 
pairs of dRAs for the same variable as given by the pixel color (referencing right-hand color scale within 
row), while the pixel’s grid position gives the times of the dRA pair relative to the onset of the offer. 
Smaller angles (warmer colors) correspond to greater similarity between representations. The bottom row 
shows the boxcar fits to the above heatmaps. Periods of significant similarity (i.e., p(qboxcar) < 0.01) are 
colored, with bar color indicating boxcar height (i.e., extent of similarity during period spanned by the 
boxcar) and referencing right-hand color scale in above row. Non-significant boxcars (p(qboxcar) ≥ 0.01) are 
shaded dark gray. The thin vertical bands to the left of each panel in (c-f) show the log10 probability of 
observing qboxcar by chance for the corresponding time, with colors referencing the right-hand color scale 
in the lower of each pair of rows (no color is shown when p(qboxcar) ≥ 0.01).  

(a) The analysis from the main text is recapitulated in (a). Alternative implementations are discussed 
below. In general, both the profile of angle similarity (heatmaps) and significance of boxcar fits did not 
depend qualitatively on the duration of dRA time bins (100, 200, or 500ms) or application of PCA-based 
denoising or regularization.  

(b) Shortening the time bin from 200ms, as used in main text, to 100ms reduced the precision in 
estimating the dRA in any given time bin (indeed the dRA magnitudes, not shown, and angles were more 
variable across time), but did not change the fundamental stability conclusions: benefit was stable early (0 
– 0.5 s), then changed to a new representation that was stable during the middle of the trial (0.5 s until 
about 1 s before the reward); choice was stable from about 1 s onward; and expected reward was stable 
from about 1 s onward for monkey N, but was equivocal for monkey K.  

(c) Similarly, lengthening the time bin to 500 ms had little effect on the same fundamental conclusions 
with a single exception: no early period of stability (0 – 0.5 s) was found for benefit. This was easily 
explained by the fact that this entire period was subtended by a single 500 ms time bin, which by its 
singular nature could not be “stable” as there was no other time bin (within the period in question) with 
which to compare it! 

(d) The effect of omitting PCA-based denoising is shown (regularization and 200 ms time bins were 
maintained). Compared to the main analysis (a), the absolute magnitude of similarity was reduced (note 
larger minimum angles in red-to-blue color bars), as expected given that the dRAs could now span a 
higher dimensional space, thus permitting higher extents of dissimilarity. However, this pressure toward 
dissimilarity was also present for the random surrogate data. Thus the similarity between the veridical 
dRAs was much greater than between the surrogate dRAs and, consequently, the estimated probability of 
observing the veridical dRAs by chance remained small (i.e., statistically significant), as observed by 
qualitatively similar boxcar plots (bottom row in (d)). Monkey K was an exception in that the absolute 
magnitudes of similarity (not shown) for benefit (during the middle period) and expected reward were so 
markedly reduced by the lack of denoising as to be indistinguishable from chance. Monkey K may have 
been particularly susceptible to the lack of denoising because of the markedly higher number of 
dimensions in its full dataset (342 units compared to monkey N’s 68), making dissimilarity much more 
common. In addition, even in the main text analysis (a), the similarity during these periods was much 
lower for monkey K than N. 

(e) The effect of omitting L2-regularization is shown (PCA-based denoising and 200 ms time bins 
were maintained). Recall that L2-regularization penalizes extreme values across the set of beta 
coefficients for the task-relevant variables for a given neuron within a given time bin. That is, the 
regularization assumes that a given neuron contributes at least partially to the representation of multiple 
variables (consistent with mixed selectivity). When the representations are robust within the population 
(i.e., high dRA magnitude), the impact of omitting regularization is minimal. However, when a significant 
degree of noise is present (i.e., firing rates are poorly explained by the task-relevant variables), 
unregularized dRAs will reflect these small, random changes in firing rate (i.e., overfitting) and vary 
accordingly over time. The stability heatmaps (e, top row) are consistent with these predictions: during the 
trial, when encoding of the task-relevant variables is strong, the similarity of dRAs is comparable to the 
main text analysis (a), albeit with slightly greater extremes of similarity (note smaller minimum angles in 
red-to-blue color bars). However, during periods of low or even absent encoding (e.g., prior to the offer), 
the unregularized dRAs exhibit some similarity. (Note: this similarity is not reflected in the boxcar plots 
because boxcars fits were limited to the period from offer onset to the end of the trial.) The putative 
similarity during this pre-offer time must be spurious (i.e., resulting from dRAs overfitted to random 
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variation) because the external information needed to drive benefit or expected reward signals did not 
exist prior to the offer. Applying regularization, as done in the main analysis (a), mitigates this overfitting.  

Finally, the absence of regularization all but eliminated the statistical significance of the boxcars (e, 
lower row). We confirmed this was not due to a reduction in the magnitude of similarity (i.e., boxcar 
height) in the veridical data (not shown), which was nearly identical to that in the main analysis. Rather, 
the lack of significance was due to a massive increase in the height of the boxcars fit to the surrogate 
data. To provide an intuition for this phenomenon, consider computing the dRAs within a single surrogate 
dataset. Say, by chance, the average firing rate in a given time bin was highly correlated with benefit, but 
not so much with the other task-relevant variables. Because this correlation resulted from random 
variation, it did not generalize well when measured within subsets of trials (i.e., poor cross-validation) and 
thus would be suppressed by regularization. However, without regularization, the exclusive correlation 
with benefit and the lack of generalization were tolerated by the analysis, resulting in an unusually large 
beta coefficient for benefit and negligible coefficients for the other variables. In the adjacent time bins, the 
fact that temporal smoothness was preserved in the surrogate data caused the same random correlation 
with benefit to be maintained across several time bins, resulting in spuriously high similarity for that 
surrogate dataset. Of course, this spurious benefit signal would be absent in a different surrogate dataset, 
though a similar pattern of spurious similarity would be observed for a different variable. Across datasets, 
this process inflated the similarity within the surrogate data and thus increased our estimates of observing 
a given level of similarity by chance. Though some surrogate datasets lacked spurious levels of similarity 
for any variable, these datasets could not offset the spuriously high levels in other datasets because of a 
floor effect: similarity could not be less than zero. By applying regularization, we mitigated the tendency to 
overfit the dRAs and reduced the apparent similarity of dRAs explaining random variation in firing rate 
that did not generalize across trials. Ultimately, use of regularization in the main analysis more accurately 
estimated chance levels of similarity.  
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Supplementary Figure 23. Sign reversals in dynamic low-dimensional representations 
The preceding similarity analyses examined the folded angle q (Equation (15)), which measured the 
absolute similarity between dynamic low-dimensional representations (dRAs) by treating angles 
equidistant from 90° as equivalent. However, the folded angles did not capture reversals in the sign of 
representation, i.e., when the absolute magnitude of encoding remained consistent over the course of the 
trial, but the sign reversed (e.g., Figure 2d). To detect reversals, we computed the unfolded angle q' 
(Equation (16)), which was limited to the range [90, 180°]. The present figure examines sign reversals for 
monkeys N (left 3 columns) and K (right 3 columns) based on q' between the dynamic representations 
(dRAs) for benefit, choice, and expected reward (left, middle, and right columns, respectively, for a given 
animal).  

(a,b) Angle q'  in degrees between a pair of dRAs of the same variable is given by the color of 
each pixel (referencing right-hand color scale in (a,b)), and the times of the dRA pair (relative to the onset 
of the offer period) are given by the pixel’s row and column positions. Larger angles (warmer colors) 
correspond to greater similarity between representations but with opposite sign of representation. Values 
of q' < 90° were excluded from statistical analysis and were coded as 90° for display purposes only. The 
diagonal compares identical dRAs and is colored gray and was excluded from analysis. (c,d) Boxcar 
function with baseline of 90° was fit to each row of angles in (a,b), and the period of non-zero boxcar 
height is indicated by a colored or dark gray horizontal bar in the corresponding row of (c,d). Periods of 
significant similarity (i.e., p(q'boxcar) < 0.01) are colored, where bar color represents the boxcar height 
q'boxcar, i.e., magnitude of similarity, measured in degrees and referencing the right-hand color scale in 
(a,b). When p(q'boxcar) < 0.01, the value of p is indicated by the color of the vertical band to the left of the 
corresponding row in (a-d) and references the right-hand color scale in (c,d). (In effect, only a single row 
for a single variable was significant; (b,d), right panel). Boxcars for which p(q'boxcar) ≥ 0.01 are shaded dark 
gray in (c,d). Periods where qboxcar £ 90° are shown in light gray. (e,f) The log10 probability of observing by 
chance the pairwise similarity q' (a,b)—not the period of contiguous similarity, q'boxcar—is given by the 
color of the corresponding pixel and references the right-hand color scale in (e,f). The diagonal compares 
identical dRAs and is colored gray. (g,h) Recapitulated from Figure 5, the vector magnitude of each dRA 
is shown as a function of time from the onset of the offer period and provides a reference as to the 
magnitude of population encoding available for representation at a given time.  
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Supplementary Figure 24. Similarity between representations of different variables. 
The preceding similarity analyses compared dynamic low-dimensional representations (dRAs) of the 
same task-relevant variable. Here we examined the similarity, or “cross-talk”, between dRAs of different 
variables for monkeys N (left 3 columns) and K (right 3 columns). For a given animal, the dRAs between 
variables A and B (A x B) were compared: benefit x choice (left column), benefit x expected reward 
(middle column), and choice x expected reward (right column). (a,b) Angle qij in degrees between pair of 
dRAs for variable A at time i (ordinate) and variable B at time j (abscissa) is given by the color of pixel ij 
(referencing right-hand color scale in (a,b)), and the times of the respective dRAs relative to offer onset 
are given by the pixel’s row and column position. Smaller angles (warmer colors) correspond to greater 
similarity between representations. The colored bands to the left of or below each panel are described 
below. (c-f) Unlike comparing dRAs of the same variable (e.g., Figure 5), the present matrix of angles q 
was not symmetrical. Thus, a boxcar function was fit separately to each row or column of angles in (a,b) 
and the period of non-zero boxcar height is indicated by the horizontal or vertical bar in the corresponding 
row or column of (c,d) or (e,f), respectively. Periods of significant similarity (p(qboxcar) < 0.01) are colored, 
where bar color represents the boxcar height qboxcar, i.e., magnitude of similarity, measured in degrees 
and referencing the right-hand color scale in (a,b). The log10 probability p of observing qboxcar is indicated 
by the color of the vertical or horizontal band to the left of or below the corresponding row or column in (a-
f), respectively, and the colors reference the right-hand color scale in (c,d). Boxcars for which p(qboxcar) ≥ 
0.01 are shaded dark gray and the corresponding entries within the colored bands are omitted. Periods 
where qboxcar = 0 are shown in light gray. (g,h) The log10 probability of observing by chance the pairwise 
angle qij in (a,b) is given by the color of the corresponding pixel and references the right-hand color scale 
in (g,h). 

We observed that the representations of different variables overlapped during periods of the trial. For 
instance, the mid-trial dRAs for benefit were similar to the mid-to-late trial dRAs for choice (a,b, left 
panels), though the similarity was only statistically significant for monkey K. This overlap suggested a 
means to compute expected reward, as a readout tuned to this mid-trial shared representation would 
intrinsically integrate offer and choice information. However, though compelling conceptually, the timing of 
the representations in the present study was inconsistent with this mechanism: the EXPECTED REWARD 
sRA detected significant RSV prior to when the benefit and choice dRAs overlapped (Figure 4c-f). Future 
studies with simultaneously recorded units may examine these interactions of representations over time 
to understand how the network computes a given variable. 

50

65

90

10-3

10-2

0.05

10-3

0.01

40

55

70

90

10-3

10-2

0.05

10-3

0.01

a b

c

monkey N monkey K

d

Time from offer (s) Time from offer (s)

e f

Ti
m

e 
fro

m
 o

ffe
r (

s)

g h

Choice x
Expected Reward

Benefit x
Choice

Benefit x
Expected Reward

Benefit x
Choice

Benefit x
Expected Reward

Choice x
Expected Reward θ (deg)

log10P(θboxcar)

θ (deg)

log10P(θboxcar)

log10P(θ) log10P(θ)

0 2 4

0

2

4
0 2 4

0

2

4
0 2 4

0

2

4

0 2 4

0

2

4
0 2 4

0

2

4
0 2 4

0

2

4

0 2 4

0

2

4
0 2 4

0

2

4
0 2 4

0

2

4

0 2 4

0

2

4
0 2 4

0

2

4
0 2 4

0

2

4

0 2 4 6

0

2

4

6
0 2 4 6

0

2

4

6
0 2 4 6

0

2

4

6

0 2 4 6

0

2

4

6
0 2 4 6

0

2

4

6
0 2 4 6

0

2

4

6

0 2 4 6

0

2

4

6
0 2 4 6

0

2

4

6
0 2 4 6

0

2

4

6

0 2 4 6

0

2

4

6
0 2 4 6

0

2

4

6
0 2 4 6

0

2

4

6



Kimmel et al. OFC Value and Choice Representations, Supplementary Information p. 46 of 64 

Previous-trial low-dimensional representations 

 
Supplementary Figure 25. Relationship between present- and previous-trial representations. 
(a,b) Regression coefficients for the present- (abscissa) and previous-trial (ordinate) representations (i.e., 
sRAs) of the same variable are shown for individual units (open circles; point estimates derived from all 
trials) with associated standard deviations (horizontal and vertical error bars; derived from N=700 
resampled datasets per unit, see Methods) for monkeys N (a) and K (b). The horizontal and vertical 
meridians (dashed lines) indicate the location of hypothetical units representing the given variable for only 
the present or previous trial (but not both). Most units did not intersect these meridians, consistent with 
mixed representations of present- and previous-trial variables at the level of individual units. See 
Supplementary Table 3 for correlation coefficients and angles between present- and previous-trial sRAs. 
For current figure, sRAs were derived without orthogonalizing regression axes.  
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Supplementary Figure 26. Specificity of previous-trial low-dimensional representations. 
(a-d) For detailed explanation of plotting conventions, refer to the analogous Supplementary Figure 14. 
Both figures demonstrate the specificity of a set of low-dimensional representations (i.e., sRAs) to their 
targeted variables of interest. Whereas the prior figure concerned representations of present-trial 
variables during the present offer and work periods, the current figure concerns representations of 
variables from the previous trial—previous benefit (green), previous choice (orange), and experienced 
reward (blue)—during a period aligned to the present fixation and extending retrospectively to the 
previous fixation. The on-target relevant signal variance (RSV; thick curves), off-target partial RSV (thin 
curves), and overall variance explained (dotted black curves) for the previous-trial sRAs (columns, as 
labeled) are shown in (a,c) with associated log10 probability shown in (b,d) for monkeys N (a,b) and K 
(c,d). Horizontal gray bars and solid gray squares indicate the 2.5-to-97.5 percentile range and median, 
respectively, of previous trial events, as labeled. 
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Supplementary Figure 27. Contribution of individual units to previous-trial representations. 
(a,b) Histogram of regression coefficients specifying each unit’s contribution to the static low-dimensional 
representations (sRAs) of the previous-trial variables: PREVIOUS BENEFIT (left panels), PREVIOUS CHOICE 
(middle panels), and EXPERIENCED REWARD (right panels) for monkeys N (a) and K (b). Distribution mean 
(gray arrow and text) and p-value (gray text; via two-sided t-test) of null hypothesis that mean = 0 (vertical 
dashed line) are shown. Gaussian functions were fit to each distribution (black curves). Probability (black 
text) of falsely rejecting the null hypothesis that observed distribution was Gaussian was computed via 
two-tailed Kolmogorov–Smirnov test. No distribution except one differed significantly from Gaussian. For 
present figure, sRAs were derived without orthogonalizing regression axes.   
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Supplementary Figure 28. Relationship between previous-trial representations. 
(a,b) As for the present-trial representations in Figure 3a,c, the pairwise relationship between regression 
coefficients for the previous-trial representations (i.e., sRAs; abscissa and ordinate labels) are shown for 
individual units (open circles; point estimates derived from all trials) with associated standard deviations 
(horizontal and vertical error bars; derived from N=700 resampled datasets per unit, see Methods) for 
monkeys N (a) and K (b). The horizontal and vertical meridians (dashed lines) indicate the location of 
hypothetical units representing a solitary variable. Most units did not intersect these meridians, consistent 
with mixed representations at the level of individual units. See Supplementary Table 4 for correlation 
coefficients and angles between previous-trial sRAs. For present figure, sRAs were derived without 
orthogonalizing regression axes.   
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Supplementary Figure 29. Reliability and separability of previous-trial representations. 
Figure refers to previous-trial representations (i.e., sRAs). For detailed description of analogous 
procedures on present-trial representations, see Supplementary Figure 7 for (a,c,e,g) and Figure 3b,d for 
(b,d,f,h). (a,c) Histograms of within-variable correlation coefficient r̃ii across resampled datasets are 
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shown for monkeys N (a) and K (c), revealing high reliability of the sRAs. (b,d) The mean and 95% CI of 
the distributions of r̃ii (as shown in (a,c)) are summarized by bar height and error bars, respectively, for 
monkeys N (b) and K (d). (e,g) Histograms of the null model of between-variable correlation coefficients r̃ij 
are shown for representations of each pair of variables i and j and compared to the observed correlation rij 
(vertical dashed red line) for monkeys N (e) and K (g). Null model refers to the hypothetical correlation 
between two perfectly correlated representations corrupted by independent noise (i.e., low reliability of 
the coefficients), as measured across resampled datasets. (f,h) The observed and hypothetical between-
variable correlations are summarized for monkeys N (f) and K (h). Bar height corresponds to observed 
correlation rij (i.e., red vertical dashed line in (e,g)). Gray dashed horizontal line and shading indicate the 
mean and 95% confidence interval (CI), respectively, of the hypothetical correlation r̃ij (i.e., histograms in 
(e,g)). In all but one case, observed correlations were closer to zero (i.e., less correlated) than 95% of the 
null hypothetical correlations, defining the pairs of representations as separable. The resampled data 
included 700 resampled datasets generating N=244,650 pairwise correlations. See Supplementary Table 
4 for summary statistics. For present figure, sRAs were derived without orthogonalizing regression axes.  
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Computing low-dimensional representations exclusively in single units 

 
Supplementary Figure 30. Contribution of single units to low-dimensional representations. 
We separately discovered the low-dimensional representations (sRAs) in a subset of data limited to single 
units. (a,c) As in Supplementary Figure 5a,b, histograms of regression coefficients that determined the 
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contribution each single unit to the sRAs of BENEFIT (left panels), CHOICE (middle panels), and EXPECTED 
REWARD (right panels) are shown for monkeys N (a) and K (c). Distribution mean (gray arrow and text) 
and p-value (gray text; via two-sided t-test) of null hypothesis that mean = 0 (black vertical line) are 
shown. Probability (black text) of falsely rejecting null hypothesis that observed distribution was Gaussian 
was computed via two-tailed Kolmogorov–Smirnov test. No distribution differed significantly from 
Gaussian. (b,d) As in Figure 3a,c, the pairwise relationship between regression coefficients for task-
relevant variables (abscissa and ordinate labels) are shown for single units (open circles; point estimates 
derived from all trials) with associated standard deviations (horizontal and vertical error bars; derived from 
N=700 resampled datasets per unit, see Methods) for monkeys N (b) and K (d). The horizontal and 
vertical meridians (dashed lines) indicate the location of hypothetical units representing a solitary variable. 
Most units did not intersect these meridians, consistent with mixed representations at the level of single 
units. See Supplementary Table 2 for correlation coefficients and angles between single-unit sRAs. For 
present figure, all regression coefficients were found without orthogonalizing the sRAs.  
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Supplementary Figure 31. Activity of single unit-based low-dimensional representations. 
We separately discovered the low-dimensional representations (sRAs) in a subset of data limited to single 
units and projected the population response for each combination of offer size (colors, see legend) and 
choice (accept or reject choices in thick or thin curves, respectively) onto the sRAs of BENEFIT (left 
panels), CHOICE (middle panels), and EXPECTED REWARD (left panels) as a function of time from the onset 
of the offer period (vertical black lines) for monkeys N (a) and K (b). The sensitivity of the sRAs for the 
task-relevant variables did not differ qualitatively between single units (shown here) and the entire 
population (Figure 4a,b). See Supplementary Figure 32 for additional metrics. 
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Supplementary Figure 32. Variance explained by single unit-based low-dimensional 
representations.  
We separately discovered the low-dimensional representations (sRAs) in a subset of data limited to single 
units for monkeys N (a,c,e) and K (b,d,f). (a,b) As for the full population in Supplementary Figure 13a, the 
variance explained by these single-unit based sRAs of BENEFIT (green curve), CHOICE (orange curve), and 
EXPECTED REWARD (blue curve) is plotted as a function of time from the onset of the offer period (black 
vertical line). The area of gray shading represents the variance explained by 95% of random vectors 
reflecting the dimensionality of the data (redefined here for the population of single units). To estimate the 
upper-bound for variance explained, we performed principal components analysis independently at each 
time bin and plotted the variance explained by the top component (black dotted curve), which represented 
the maximal variance explained by any single, time-varying dimension. (c,d) As in Figure 4c,d, we plotted 
the relevant and irrelevant signal variance (RSV and ISV, solid and dashed lines, respectively) explained 
by the sRAs (colors as above) with respect to the targeted variable of interest (e.g., RSV explained by the 
BENEFIT sRA with respect to the benefit variable). (e,f) As in Figure 4e,f, we plotted the log10 probability 
(one-sided, uncorrected) of RSV and ISV, which was derived empirically in comparison to the null 
distribution of random vectors (see Methods). Area of gray shading represents p > 0.05.   
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Supplementary Tables 
Supplementary Table 1. Significant encoding of task-relevant variables in individual units. 

 Monkey N Monkey K 

Variable A BENEFIT CHOICE EXPECTED 
REWARD BENEFIT CHOICE EXPECTED 

REWARD 
1. Included 67* 67* 67* 340* 340* 340* 

2. Significant 46 (69%) 33 (49%) 41 (61%) 138 (41%) 147 (43%) 107 (31%) 

Single Units       
3. Included 25* 25* 25* 129* 129* 129* 

4. Significant 17 (68%) 11 (44%) 19 (76%) 47 (36%) 48 (37%) 39 (30%) 

Overlap with 
Variable B CHOICE EXPECTED 

REWARD BENEFIT CHOICE EXPECTED 
REWARD BENEFIT 

5.  Both sig. 
 obs. / exp. 

25 (37%) 
22.7 (34%) 

20 (30%) 
20.2 (30%) 

32 (48%) 
28.1 (42%) 

66 (19%) 
59.7 (18%) 

59 (17%) 
46.3 (14%) 

56 (16%) 
43.4 (13%) 

6.  Both non-sig. 13 (19%) 
10.7 (16%) 

13 (19%) 
13.2 (20%) 

12 (18%) 
8.15 (12%) 

121 (36%) 
115 (34%) 

145 (43%) 
132 (39%) 

151 (44%) 
138 (41%) 

7.  A sig. only 21 (31%) 
23.3 (35%) 

13 (19%) 
12.8 (19%) 

9 (13%) 
12.9 (19%) 

72 (21%) 
78.3 (23%) 

88 (26%) 
101 (30%) 

51 (15%) 
63.6 (19%) 

8.  B sig. only 8 (12%) 
10.3 (15%) 

21 (31%) 
20.8 (31%) 

14 (21%) 
17.9 (27%) 

81 (24%) 
87.3 (26%) 

48 (14%) 
60.7 (18%) 

82 (24%) 
94.6 (28%) 

9.  p(χ!,df) 0.22 (1.5, 1) 0.92 (0.01, 1) 0.037 (4.3, 1) 0.16 (2.0, 1) 0.0027 (9.0, 1) 0.0028 (8.9, 1) 

Number (percentage) of total included units or units with significant regression coefficients (p < 0.05 
based on the trial-level resampling procedure, see Methods) are listed in the first or second rows for all 
units, and in rows 3 or 4 for coefficients discovered separately in a subset of data limited to single units, 
respectively. In rows 5 to 8, the coincidence of significant coefficients observed for task-relevant variables 
A (top header) and B (second header) are reported as the number (percentage) of units for which both, 
neither, only variable A only, or only variable B coefficient(s) were significant, respectively. Below each 
observed (obs.) value, the expected (exp.) number (percentage) of units is reported in italics assuming 
independence between the neural representations. For instance, if X and Y were the percentage of 
significant units for variables A and B, respectively, then the expected percentage of units significant for 
both A and B was given by X*Y. We compared the observed and expected values via the 𝜒% statistic: 
𝜒% = (𝑜𝑏𝑠 − 𝑒𝑥𝑝)%/𝑒𝑥𝑝. The 𝜒% statistic and associated p-value (taken as the integral of the 𝜒%-distribution 
with df = 1 from 𝜒% to Inf) are reported in row 9.  

For all pairs of variables, we observed equal or more units that were jointly significant for both 
variables (or neither variable) than expected given independence between variables (compare observed 
and expected values in data rows 5 and 6). Likewise, we observed fewer than expected units that were 
significant for a single variable (rows 7 and 8). We concluded that significant encoding of the task-relevant 
variables was at least distributed independently across the variables—and in some cases encoding of 
multiple variables was enriched beyond that expected by independence (i.e., p(𝜒%) < 0.05)—thereby 
leading to mixed selectivity for multiple variables at the level of individual units.  

*One or two (monkey N or K, respectively) units were excluded from the present analysis because, 
for at least one variable, the distribution of coefficients across resampled datasets was not well-fit by a 
normal distribution, thus precluding any conclusions about their significance. Note: these distributions are 
distinct from the distributions of coefficients across units, which were well-fit by a normal distribution 
(Supplementary Figure 5). 

For present table, all regression coefficients were found without orthogonalizing the sRAs.  
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Supplementary Table 2. Reliability of and correlation between low-dimensional representations. 
 Monkey N Monkey K 

Within-variable BENEFIT CHOICE EXPECTED 
REWARD 

BENEFIT CHOICE EXPECTED 
REWARD 

r̃ii 0.96 0.90 0.92 0.85 0.81 0.72 

p(r̃ii = 0) < 10-16* < 10-16* < 10-16* < 10-16* < 10-16* < 10-16* 

Between-variable BENEFIT x 
CHOICE 

BENEFIT x 
EXPECTED 
REWARD 

CHOICE x 
EXPECTED 
REWARD 

BENEFIT x 
CHOICE 

BENEFIT x 
EXPECTED 
REWARD 

CHOICE x 
EXPECTED 
REWARD 

rij -0.15 0.27 -0.49 -0.20 0.17 -0.28 

p(rij = 0) 0.23 0.027 2.4 * 10-5 2.5 * 10-4 2.2 * 10-3 1.6 * 10-7 

mean(r̃ij) 0.93 0.94 0.91 0.83 0.78 0.76 

p(r̃ij = |rij|, r̃ij > |rij|) < 10-16* < 10-16* < 10-16* < 10-16* < 10-16* < 10-16* 

qij 77° 80° 65° 76° 84° 84° 

p(𝜃$ = qij, 𝜃$ > qij) 0.3 0.4 0.03 0.03 0.4 0.4 

p(𝜃$ = qij, 𝜃$ < qij) 0.8 0.6 0.97 0.97 0.6 0.6 

Single units       
rij -0.086 0.13 -0.62 0.062 0.16 -0.35 

p(rij = 0) 0.68 0.52 7.1 * 10-4 0.48 0.067 4.4 * 10-5 

qij 80° 87° 57° 86° 81° 72° 

p(𝜃$ = qij, 𝜃$ > qij) 0.5 0.8 0.02 0.6 0.2 0.006 

p(𝜃$ = qij, 𝜃$ < qij) 0.5 0.2 0.98 0.4 0.8 0.99 
Pearson correlation coefficients and associated angles pertaining to within-variable reliability and 
between-variable correlations of non-orthogonalized low-dimensional representations (sRAs).  

r̃ii refers to the correlation between pairs of representations of task-relevant variable i Î {BENEFIT, 
CHOICE, EXPECTED REWARD} across N=700 resampled datasets and was used as a measure of within-
variable reliability (Figure 3; Supplementary Figure 7; Methods). rij refers to the correlation observed 
between representations of variables i and j, and associated p(rij = 0) is the conventional statistic against 
null hypothesis of r = 0 (Student’s t test). r̃ij refers to the null distribution of correlation between 
representations of variables i and j assuming the variables were perfectly correlated (or anti-correlated) 
but subject to independent noise, as estimated from r̃ii.  

qij refers to the folded angle (range [0, 90°]) between representations (i.e., dimensions) of variables i 
and j. 𝜃3 refers to the null distribution of angles measured empirically between random dimensions 
(Methods) and to which angles qij were compared. 

For 2-tailed tests, p(H0) refers to the probability of falsely rejecting the null hypothesis H0 in favor of 
the unsigned alternative hypothesis. For 1-tailed tests, p(H0, H1) refers to the probability of falsely 
rejecting the null hypothesis H0 in favor of the alternative hypothesis H1. By convention, H: X = µ is the 
hypothesis that the values X arose from a distribution with mean µ.  

When p(r̃ij = |rij|, r̃ij > |rij|) was small, the representations of i and j were less correlated than expected 
given their respective reliability, i.e., they were separable. All pairs of sRAs were highly separable. 

When p(𝜃3 = qij, 𝜃3 > qij) or p(𝜃3 = qij, 𝜃3 < qij) was small, the angle between representations i and j was 
smaller or larger (i.e., the representations were more similar or different), respectively, than expected 
given the dimensionality of the data (i.e., intrinsic correlations between neurons; see Methods). The null 
hypothesis 𝜃3 = qij was tested separately against each 1-tailed alternative hypothesis because a) the 
implications of each alternative were distinct (i.e., the observed representations were more similar, less 
similar, or no different than expected by chance) and b) given that the distribution 𝜃3 was not symmetrical, 
the probability of each alternative could not be inferred from the two-tailed probability p(𝜃3 = qij). 
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Most pairs of sRAs were not more similar than chance, and no pairs were more different than chance. 
That is, in general, the extent of separation between sRAs was consistent with independent encoding 
given the limits on independence placed by the dimensionality of the data. 

Values below the dashed line were computed from sRAs discovered independently in a subset of 
data limited to single units, which showed a similar pattern as the full population. 

* Probability (or difference between probability and unity) was less than machine precision.  
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Supplementary Table 3. Correlation between present- and previous-trial low-dimensional 
representations. 

 Monkey N Monkey K 
 BENEFIT x 

PREVIOUS 
BENEFIT 

CHOICE x 
PREVIOUS 
CHOICE 

EXPECTED 
REWARD x 

EXPERIENCED 
REWARD 

BENEFIT x 
PREVIOUS 
BENEFIT 

CHOICE x 
PREVIOUS 
CHOICE 

EXPECTED 
REWARD x 

EXPERIENCED 
REWARD 

rij 0.12 0.097 0.15 0.021 0.23 0.17 

p(rij = 0) 0.35 0.43 0.24 0.70 1.5 * 10-5 1.4 * 10-3 

qij 78° 85° 80° 88° 81° 80° 

p(𝜃$ = qij, 𝜃$ > qij) 0.3 0.6 0.3 0.8 0.09 0.05 

p(𝜃$ = qij, 𝜃$ < qij) 0.8 0.4 0.7 0.3 0.9 0.95 

Conventions are the same as Supplementary Table 2 except that comparisons are between low-
dimensional representations (sRAs) of the same variable with respect to the present vs. previous trials. 
The correlation rij, angle qij, and associated p-values between present- and previous-trial (i and j, 
respectively) sRAs are given here and can be visualized in Supplementary Figure 25. The angles qij 
between previous-trial sRAs and their present-trial counterparts were neither smaller nor larger (i.e., the 
representations were neither more similar nor more different, respectively) than expected by chance (i.e., 
p(𝜃3 = qij, 𝜃3 > qij) and p(𝜃3 = qij, 𝜃3 < qij) were greater than 0.05). Unlike the comparisons between sRAs of 
different variables within the present (or previous) trial, the null model for the correlation coefficient r̃ij 
could not be computed when comparing sRAs for the same variable between the present and previous 
trials for technical reasons limiting identical execution of the underlying resampling procedure.   
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Supplementary Table 4. Reliability of and correlation between previous-trial low-dimensional 
representations. 

 Monkey N Monkey K 
Within-variable PREVIOUS 

BENEFIT 
PREVIOUS 
CHOICE 

EXPERIENCED 
REWARD 

PREVIOUS 
BENEFIT 

PREVIOUS 
CHOICE 

EXPERIENCED 
REWARD 

r̃ii 0.63 0.86 0.64 0.57 0.81 0.63 

p(r̃ii = 0) < 10-16* < 10-16* < 10-16* < 10-16* < 10-16* < 10-16* 

Between-variable PREVIOUS 
BENEFIT x 
PREVIOUS 
CHOICE 

PREVIOUS 
BENEFIT x 

EXPERIENCED 
REWARD 

PREVIOUS 
CHOICE x 

EXPERIENCED 
REWARD 

PREVIOUS 
BENEFIT x 
PREVIOUS 
CHOICE 

PREVIOUS 
BENEFIT x 

EXPERIENCED 
REWARD 

PREVIOUS 
CHOICE x 

EXPERIENCED 
REWARD 

rij 0.10 -0.53 -0.55 0.13 -0.73 -0.51 

p(rij = 0) 0.42 3.8 * 10-6 9.0 * 10-7 0.014 5.0 * 10-57 1.9 * 10-24 

mean(r̃ij) 0.73 0.63 0.74 0.68 0.60 0.72 

p(r̃ij = |rij|, r̃ij > |rij|) < 10-16* < 10-16* < 10-16* < 10-16* ~1 < 10-16* 

qij 84° 57° 57° 82° 43° 59° 

p(𝜃$ = qij, 𝜃$ > qij) 0.6 0.001 8 * 10-4 0.1 4 * 10-18 7 * 10-9 

p(𝜃$ = qij, 𝜃$ < qij) 0.4 ~1* ~1* 0.9 ~1* ~1* 

Table is identical to Supplementary Table 2 except that low-dimensional representations (sRAs) refer to 
previous-trial variables of previous benefit, previous choice, and experienced reward. The within-in 
variable correlation r̃ii (i.e., sRA reliability) can be visualized in Supplementary Figure 29a-d, whereas the 
correlations between sRAs (rij) can be visualized in Supplementary Figures 28 and 29e-h. 

In all but one case (PREVIOUS BENEFIT vs. EXPERIENCED REWARD, monkey K only), the previous-trial 
representations were highly separable (i.e., p(r̃ij = |rij|, r̃ij > |rij|) < 0.05). The angles between PREVIOUS 
BENEFIT and PREVIOUS CHOICE were not smaller (i.e., the representations were not more similar) than 
expected by chance, whereas the remaining angles were smaller than chance.  

* Probability (or difference between probability and unity) was less than machine precision.  
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Supplementary Note 1 
Solving single-trial problem with trial-average responses 

Here, we derive the trial-averaged regression model that is equivalent to the single-trial 

model in Equation (4). This allows us to write our model compactly as described in Equation (5) 

in terms of trial-averaged responses. 

Let 𝑅!(𝑟, 𝑡), as defined in Equation (4), be the firing rate of unit n at trial r and time bin t. 

Define an experimental condition c as the unique combination of K task-relevant variables. In the 

present study, this is the unique combination of benefit, choice and expected reward values. Let 

𝑅!(∀𝑟" , 𝑡) ∈ ℝ#) 	be the vector containing the firing rates of all trials that belongs to condition c  

and 𝑃$(∀𝑟") ∈ ℝ#) is the corresponding value of the task-relevant variable k, where 𝑚" is the 

number of trials in condition 𝑐 ∈ {1, … , 𝐶}. The single-trial model in Equation (4) for trials 𝑟" ∈

{1,… ,𝑚"} of condition c can thus be written for all trials in vector form as: 

 𝑅!(∀𝑟" , 𝑡) =	1#)𝛽%,!(𝑡) + 𝛽',!(𝑡)	𝑃'(∀𝑟") + 𝛽(,!(𝑡)	𝑃((∀𝑟") + 𝛽),!(𝑡)	𝑃)(∀𝑟") + ε 

where	1#) is a vector of ones of length 𝑚" 	that repeats 𝛽%,!(𝑡) as many times as trial count 𝑚".	

Since the value of 𝑃$(𝑟") is the same for all trials in experimental condition c, the above 

can be written as: 

 𝑅!(∀𝑟" , 𝑡) =	1#)𝛽%,!(𝑡) +	1#)𝛽',!(𝑡)	𝑃'(𝑐) +	1#)𝛽(,!(𝑡)	𝑃((𝑐) +	1#)𝛽),!(𝑡)	𝑃)(𝑐) + ε 

where 𝑃$(𝑐) is the task-relevant variable for condition c, which can be rewritten more compactly 

as: 

 𝑅!(∀𝑟" , 𝑡) =1#)𝑃(𝑐)
*𝐵(𝑡) + ε 

where 𝐵(𝑡) = <𝛽%,!(𝑡), 𝛽',!(𝑡), 𝛽(,!(𝑡), 𝛽),!(𝑡)=
* and 𝑃(𝑐) = [1, 𝑃'(𝑐), 𝑃((𝑐), 𝑃)(𝑐)]*. 

To solve for all trials and conditions, we solve the following linear regression problem: 

 𝐵@ = 𝑎𝑟𝑔𝑚𝑖𝑛+(-)∈ℝ*+,‖𝑅!(𝑡) −	𝑃*𝐵(𝑡)‖ 
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where 𝑅!(𝑡) = 	 G
𝑅!(∀𝑟', 𝑡)	

⋮
𝑅!(∀𝑟1 , 𝑡)

I ∈ 	ℝ∑ #)
-
).,  is the vector of all firing rates for unit n at a time bin t 

across all trials and conditions, and 𝑃 = 	 J
1#,𝑃(1)

*

⋮
1#-𝑃(𝐶)

*
K ∈ 	ℝ3∑ #)

-
)., 4	×(78')	 is the matrix with all 

task-relevant variables. 

The solution of this problem is the least-square solution given by: 

𝐵@(𝑡) = (𝑃*𝑃)9'𝑃:𝑅!(𝑡)	
 

= L<𝑃(1)	1#,
* ⋯ 𝑃(𝐶)	1#-

* =	J
1#,𝑃(1)

*

⋮
1#-𝑃(𝐶)

*
KN

9'

<𝑃(1)	1#,
* ⋯ 𝑃(𝐶)	1#-

* =	G
𝑅!(∀𝑟', 𝑡)	

⋮
𝑅!(∀𝑟1 , 𝑡)

I 

 
= O<𝑃(1)	1#,

* 1#,𝑃(1)
*⋯𝑃(𝐶)	1#-

* 1#-𝑃(𝐶)
*=P9'	<𝑃(1)	1#,

* 𝑅!(∀𝑟', 𝑡)⋯𝑃(𝐶)	1#-
* 𝑅!(∀𝑟1 , 𝑡)=	

 
= ([𝑚'𝑃(1)𝑃(1)* ⋯ 𝑚1𝑃(𝐶)𝑃(𝐶)*]	)9'	[𝑚'𝑃(1)𝑅Q!(1, 𝑡) ⋯ 𝑚1𝑃(𝐶)𝑅Q!(𝐶, 𝑡)]	
 

where 𝑅Q!(𝑐, 𝑡) =
'/)
0 ;1(∀=),-)

#)
= '

#)
∑ 𝑅!(𝑟" , 𝑡)
#)
=)>'  is the trial-averaged firing rate of condition c.  

The solution then reduces to: 

𝐵@(𝑡) = L[𝑃(1)⋯𝑃(𝐶)] J
𝑚'

⋱
𝑚"

K G
𝑃(1)*
⋮

𝑃(𝐶)*
I	N

9'

[𝑃(1)⋯𝑃(𝐶)] J
𝑚'

⋱
𝑚"

K G
𝑅Q!(1, 𝑡)

⋮
𝑅Q!(𝐶, 𝑡)

I	

 

= (𝑃Q*𝑀𝑃Q)9'𝑃Q*𝑀𝑅Q!(𝑡)	 

where 𝑃Q = 	 G
𝑃(1)*
⋮

𝑃(𝐶)*
I, 𝑀 = J

𝑚'
⋱

𝑚"

K, and 𝑅Q!(𝑡) = G
𝑅Q!(1, 𝑡)

⋮
𝑅Q!(𝐶, 𝑡)

I. 

Writing the trial count diagonal matrix as a product of square roots yields: 

  𝐵@(𝑡) = O𝑃Q*√𝑀√𝑀𝑃QP
9'
𝑃Q*√𝑀√𝑀𝑅Q!(𝑡) = VO√𝑀𝑃QP

*
O√𝑀𝑃QPW

9'
O√𝑀𝑃QP

*
X√𝑀𝑅Q!(𝑡)Y	 

The expression above is the least-square solution to the following problem: 
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 𝐵@(𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛+(-)∈ℝ*+,Z√𝑀𝑅Q!(𝑡) −	√𝑀𝑃Q𝐵(𝑡)Z 

The above problem only includes trial-averaged firing rates. Thus, we show equivalency 

between the model using single-trial observations (expressed in terms of 𝑅!) and the model 

using trial-averaged observations (expressed in terms of 𝑅Q!), weighted by trial-count (given in 

𝑀): 

 𝑚𝑖𝑛+(-)∈ℝ*+,‖𝑅!(𝑡) −	𝑃*𝐵(𝑡)‖ → 𝑚𝑖𝑛+(-)∈ℝ*+,Z√𝑀	O𝑅Q!(𝑡) −	√𝑀𝑃Q𝐵(𝑡)PZ	 
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