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Supplementary Methods
In this section, we discuss the image analysis and computational methods used in this study in more
detail. First, we state the variational image denoising and motion estimation models used in our
two-step approach. Second, we explain the efficient numerical solution of these models and give all
required implementation details. Third, we discuss the appropriate choices of regularisation parameters
used in the models. Finally, we briefly outline the workflow of our analysis of growth directionality of
EB1-labelled comets and explain the computation of the used statistical quantities.

Motion Analysis based on Variational Optical Flow
Optical flow (OF) refers to the displacement vector field that describes the apparent motion in a
sequence of images [14]. Variational OF methods constitute a popular framework for reliable and
efficient dense motion estimation with a wide range of applications. See e.g. [4] for a recent survey and
e.g. [1] for an introduction.

One of the main challenges when solving for the displacement vector field in the confocal image
sequences at hand is the combination of a very low signal-to-noise ratio and the relatively small size of
the fluorescently labelled EB1 comets. As a remedy, we apply a preceding image denoising step that
effectively eliminates noise, but is able to preserve fluorescence response of EB1-labelled comets up to
a known loss of contrast [19].

To this end, we consider a discrete (scalar) image sequence that is arranged as a vector uδ ∈ RM
withM = mnt, where n andm denote the number of pixels in vertical, respectively, horizontal direction,
and t denotes the number of frames. The finite-dimensional image denoising problem then reads

min
u

1
2‖u− u

δ‖2 + α1‖Dxu‖2,1 + β1

2 ‖Dtu‖2, (S1)

where u ∈ RM is the unknown solution, and Dx : RM → RM×2 and Dt : RM → RM are finite
difference approximations of the spatial and the temporal gradient operators, respectively.

The first two terms in (S1) constitute a standard model for variational image denoising of videos,
see e.g. [1]. The first term is a data discrepancy term, which ensures that the solution u is close to the
original sequence uδ, and the second term is a discrete (isotropic) approximation of the (scalar) total



variation regularisation [15]. We use first-order forward differences with step size one and zero-Neumann
boundary conditions, see e.g. [9], and define

‖Dxu‖2,1 =
M∑
j=1

√
(Dxu)2

j,1 + (Dxu)2
j,2.

In addition, the third term in (S1) penalises changes over time. The regularisation parameters
α1, β1 > 0 control the tradeoff between the three terms and need to be chosen carefully and in
dependence of the noise level [16]. We assume that the noise level is similar in all recorded image
sequences. In our experiments we found that these parameters significantly impact the subsequent
motion estimation. The functional in (S1) enforces temporal regularity of the reconstructed image
sequence and thereby effectively removes noise, as it is—in contrast to the fluorescence response of the
EB1-labelled comets—assumed to be randomly distributed in space and time.

In the second step, we estimate displacement vector fields from the improved sequence u. For
v = (v1, v2) ∈ RN×2 with N = mn(t− 1), the finite-dimensional minimisation problem reads

min
v

1
2‖∂tu+ 〈∇u,v〉‖2 + α2‖Dxv‖2,1 + β2

2 ‖Dtv‖2
2,2, (S2)

and incorporates spatio-temporal regularisation of the unknown. Here, the first term enforces the optical
flow equation [14] to be solved approximately. Moreover, ∂tu ∈ RN and ∇u ∈ RN×2 refer to discrete
approximations of temporal and spatial partial derivatives, respectively, and the scalar product in the
first term is taken along rows.

The matrices Dx : RN×2 → RN×4 and Dt : RN×2 → RN×2 again are finite difference approxi-
mations of the spatial and temporal gradient of a vector-valued quantity, respectively. They are given
by

Dxv = (Dxv1, Dxv2) and Dtv = (Dtv1, Dtv2).
As an (isotropic) discrete approximation of the vector total variation, see e.g. [6], we use

‖Dxv‖2,1 =
N∑
j=1

√
(Dxv1)2

j,1 + (Dxv1)2
j,2 + (Dxv2)2

j,1 + (Dxv2)2
j,2,

see e.g. [9, Sec. 7.5]. In the terminology of [11], this corresponds to the collaborative total variation
using the `2,2,1(der, col,pix) norm, see [11, Sec. 1.2 and Table 1], and ‖·‖2,2 is the matrix `2,2 norm. We
highlight that this definition of the total variation for vector-valued functions couples its components.
For other choices see e.g. the references in [11]. Again, α2, β2 > 0 are regularisation parameters that
need to be chosen appropriately.

In our experiments we found that the temporal regularisation in (S1) and (S2) was crucial, and
a frame by frame analysis of the image sequences proved insufficient due to the abovementioned
challenges.

Numerical Solution
In order to solve problems (S1) and (S2) numerically, we solve the corresponding saddle-point problems
up to sufficient accuracy. The above minimisation problems are of the general form

min
x∈X

f(Kx) + g(x). (S3)

Here, K : X → Y is a continuous linear operator between finite-dimensional real Hilbert spaces X and
Y , and both f : Y → [0,+∞] and g : X → [0,+∞] are proper, convex, and lower-semicontinuous
functions. The corresponding saddle point formulation reads

max
y∈Y

inf
x∈X
〈y,Kx〉 − f∗(y) + g(x), (S4)

where f∗ : Y ∗ → [0,+∞] is the Legendre–Fenchel conjugate of f and Y ∗ denotes the dual space of
Y . Problem (S4) can be solved by means of the primal-dual hybrid gradient (PDHG) algorithm [8],
which consists of iteratingx

(k+1) = proxτg
(
x(k) − τK∗y(k)

)
,

y(k+1) = proxσf∗
(
y(k) + σK

(
2x(k+1) − x(k))), (S5)



up to the desired accuracy for given initial data x(0), y(0). Here, τ, σ > 0 are parameters and prox(·)
denotes the proximal map, given by

proxJ(x̃) = arg min
x

1
2‖x− x̃‖

2 + J(x),

with J being a proper, convex, and lower-semicontinuous function. See e.g. [9, Sec. 3.4].
Assuming that (S4) admits solutions, so-called saddle points, and τσ‖K‖2 < 1 is satisfied, then

iteration (S5) converges to a saddle point at the rate O(1/k) [8, Thm. 1]. Here, ‖K‖ denotes the
operator norm of K. We refer e.g. to [9] for further details.

Image Denoising

The problem (S1) can be written in the form of (S3) with the operator K : RM → RM×3 given by
Ku = (Dxu,Dtu) and

g(u) = 1
2‖u− u

δ‖2, f(p, q) = α1‖p‖2,1 + β1

2 ‖q‖
2. (S6)

Here, p ∈ RM×2 and q ∈ RM .1 Since the function f is separable, its Legendre–Fenchel conjugate is

f∗(p, q) = δ{‖·‖2,∞≤α1}(p) + 1
2β1
‖q‖2, (S7)

see e.g. [3, Thm. 4.12]. Here, δ{‖·‖2,∞≤α1} is the indicator function of the dual ball of size α1. It is
defined as

δ{‖·‖2,∞≤α1}(p) =
{

0 if ‖pj‖ ≤ α1 for all j,
+∞ else,

where the index j refers to the j-th row of a matrix. A corresponding saddle point formulation is then

min
u

max
p,q
〈Dxu,p〉+ 〈Dtu, q〉+ g(u)− δ{‖·‖2,∞≤α1}(p)− 1

2β1
‖q‖2. (S8)

The proximal mappings in (S5) with respect to g and f∗ can be computed in a straightforward
manner. For the function g in (S6) it is given by

prox τ
2 ‖·−uδ‖2(ũ) = ũ+ τuδ

1 + τ
.

Since f∗ is separable, the proximal mapping of (S7) can be computed separately for each dual variable
p and q, see e.g. [3, Thm. 6.6]. They are given by the (pixelwise) orthogonal projection onto the
‖·‖2,∞-ball of size α1 [8, Eq. 4.23], that is

p̂ = Π{‖·‖2,∞≤α1}(p̃)⇔ p̂j = p̃j
max{1, α−1

1 ‖p̃j‖}
,

and by
prox σ

2β1
‖·‖2(q̃) = β1q̃

σ + β1
.

Motion Estimation

Similar to before, the problem (S2) can be written in the form of (S3) with the operator K : RN×2 →
RN×6 given by Kv = (Dxv,Dtv) and

g(v) = 1
2‖∂tu+ 〈∇u,v〉‖2, f(p,q) = α2‖p‖2,1 + β2

2 ‖q‖
2
2,2. (S9)

Here, p ∈ RN×4 and q ∈ RN×2. As before, f is a separable function in p and q, and we have

f∗(p,q) = δ{‖·‖2,∞≤α2}(p) + 1
2β2
‖q‖2

2,2. (S10)

1Even though uncommon in the literature, we will refrain from introducing new variables and instead use the same for
both f and f∗ for simplicity, since the dimensions are the same.



A corresponding saddle point formulation is

min
v

max
p,q
〈Dxv,p〉+ 〈Dtv,q〉+ g(v)− δ{‖·‖2,∞≤α2}(p)− 1

2β2
‖q‖2

2,2. (S11)

It remains to state the proximal mappings required for iterating (S5). For the function g in (S9) it
can be computed as the solution of a linear system of two equations for each (pixel) j ∈ {1, . . . , N},
see e.g. [10, Chap. 4.5.2]. It is given by

v̂ = prox τ
2 ‖∂tu+〈∇u,·〉‖2(ṽ)⇔ v̂j solves

(
Id + τ(∇u)>j (∇u)j

)
v̂>j = ṽ>j − τ(∇u)>j (∂tu)j ,

where Id is the identity matrix of size two. Moreover, since f∗ again is separable with respect to p
and q, the proximal map with respect to (S10) can be computed separately for each variable. Similar
to before, they are given by

p̂ = Π{‖·‖2,∞≤α2}(p̃)⇔ p̂j = p̃j
max{1, α−1

2 ‖p̃j‖}

and by
prox σ

2β2
‖·‖2

2,2
(q̃) = β2q̃

σ + β2
.

Implementation Details

We implemented algorithm (S5) in MATLAB using built-in graphics-processing unit (GPU) acceleration.
Computations were performed on an Intel Xeon E5-2630 v4 2.2 GHz server equipped with 128 GB RAM
and an NVIDIA Quadro P6000 GPU featuring 24 GB of memory.

A typical two-dimensional image sequence uδ has m = 256 horizontal, respectively n = 512 vertical
pixels, and t = 100 frames (although some sequences are longer and have t = 200 or even t = 400
frames). Before processing, the intensity values of each sequence were scaled to the interval [0, 1]. The
total number of unknowns in problems (S1) and (S2) for a typical sequence are M ≈ 13 · 106 and
N ≈ 26 · 106, respectively, plus the number of corresponding dual variables. A typical sequence with
100 frames thus results in approximately 13 million computed (displacement) vectors.

As a termination criterion in algorithm (S5) we used the primal-dual residual, see e.g. [13]. By
defining

p(k+1) := 1
τ

(
x(k) − x(k+1))−K∗(y(k) − y(k+1)),

d(k+1) := 1
σ

(
y(k) − y(k+1))−K(x(k) − x(k+1)),

we say that convergence in terms of the primal-dual residual is achieved if

1
N

∑
j

∣∣∣p(k+1)
j

∣∣∣+ 1
N

∑
j

∣∣∣d(k+1)
j

∣∣∣ < ε. (S12)

Here, the index j runs over all entries of the corresponding vector or matrix. In our experiments we set
ε := 10−6 and terminated algorithm (S5) as soon as (S12) was satisfied. For computational efficiency,
(S12) was checked only every 100 iterations for problem (S8) and every 500 iterations for problem
(S11).

A straightforward calculation along the lines of [7, Thm. 3.1] gives ‖K‖2 ≤ 12 for both formulations.
This can easily be confirmed numerically by applying the power method, see e.g. [18], to K∗K, since
‖K‖2 = ‖K∗‖2 = ‖K∗K‖. However, we found experimentally that, for both problems, algorithm (S5)
converged in terms of the primal-dual residual with parameters set to τ, σ := 1/

√
8.

The total number of processed image sequences amounted to 57. On average, the algorithm was
terminated after 788.14± 85.53 (95 % confidence interval) iterations for the image denoising and after
7788.14± 492.44 iterations for the motion estimation, which resulted in an average computation time
per sequence of 1.18±0.16 minutes and 27.37±4.22 minutes, respectively, using the GPU. The overall
processing time per sequence was 28.55±4.29 minutes on average. In total, the computational analysis
took approximately 28 hours.

The source code of our implementation and of the data analysis is available online.2

2https://doi.org/10.5281/zenodo.2573254



Estimation of Regularisation Parameters
In order to select appropriate regularisation parameters in problems (S1) and (S2), we chose one
representative sequence and computed results for the first ten frames for varying parameters αj , βj ,
where j ∈ {1, 2}. Supplementary Fig. S1 shows the chosen test sequence. Observe the high noise
contamination and the small size of the fluorescently labelled EB1 comets.

We solved problems (S1) and (S2) based on this test sequence for all parameter combinations

(α1, β1, α2, β2) ∈ {0.005, 0.01, 0.05}× {0.05, 0.1, 0.75}× {0.0005, 0.001, 0.05}× {0.001, 0.005, 0.01}.

Supplementary Fig. S1 shows the solution u of the denoising step for one particular parameter setting.
To be precise, it shows the variable u of an approximate solution of the saddle point problem (S8). In
Suppl. Fig. S2, we illustrate results for various parameter configurations. We only show the first frame
of each result. The effect of the parameter α1 is clearly visible and choosing it too large results in large
piecewise constant and undesirable patches (see Suppl. Fig. S2, bottom row). The results for varying
parameter β1 are omitted, as its effect is difficult to visualise.

In Suppl. Fig. S3, we show results for the motion estimation step for fixed parameters α2, β2 but
varying parameters α1, β1 for the denoising problem. The same parameters as in Suppl. Fig. S2 were
used to demonstrate the impact of the denoising step on the result of the motion estimation. Again,
we display the approximation v of a saddle point of problem (S11). In Suppl. Fig. S3, we use a
standard colour-coding to display the computed velocities [2]. For a vector v>j ∈ R2 at a pixel j, the
displayed colour is determined by the orientation of the velocity, while the shown intensity depends on
its magnitude. The colour-coding is indicated at the boundary of the results. In order to increase the
contrast, the velocities were scaled before visualisation by adjusting the histogram of their magnitudes
slightly.

It is evident that varying the regularisation parameters of the denoising step significantly impacts
the result of the motion estimation. Clearly, a certain level of regularisation is required. Choosing the
parameter α1 too large results in a loss of information and the subsequent motion estimation is not
able to identify individual EB1-labelled comet movement, see red arrows in Suppl. Fig. S3. Conversely,
choosing parameter β1 too small, results in the appearance of false signals in the velocity fields, see
black arrows in Suppl. Fig. S3.

In order to determine parameter settings that capture EB1 motion accurately, we determined flow
fields for the first 10 frames of a single image sequence by testing each individual of the 81 possible
combinations of regularisation parameters αj , βj , where j ∈ {1, 2}. Based on the resulting vector fields,
the vast majority of these combinations could be excluded by visual analysis, since they resulted in a
complete loss of motion signals, or in noisy vector fields indicating motion in areas of the cell that were
clearly void of EB1 comets. The final parameter setting that we used was then chosen based on visual
comparison of the computed vector field with the appearance of EB1 signals in the image series. Since
a ground truth (e.g. EB1 tracks or clean image sequences) is not available for our data sets, testing
a finite number of combinations for the regularisation parameters was necessary to estimate suitable
values for the further analysis.

The final parameter setting used to analyse the sequences is highlighted in Suppl. Fig. S2 with a
red and in Suppl. Fig. S3 with a black frame, respectively. Let us mention that, since we obtained
our image sequences from a single imaging plane, the estimated velocity is the apparent 2D motion of
fluorescent particles and does not account for movement orthogonal to the imaging plane.

Computational and Statistical Analysis
In Suppl. Fig. S4 we show results of the two-step image analysis for one selected control cell. The de-
noised sequence shows a visually improved signal-to-noise ratio (see also Suppl. Movie 2) and the colour-
coded displacement fields indicate movement of bright spots very well. Moreover, in Suppl. Fig. S5 we
show the mean velocities (over time) within each masked oocyte for all analysed datasets. The result
shown in Suppl. Fig. S4 corresponds to the top left result in Suppl. Fig. S5.

As a verification of the approach and the selected regularisation parameters, we examined the
arithmetic mean velocity (over time) v̄ in a control region around the follicular cells in the posterior of
the cells, see Suppl. Fig. S6(A)–(C). In this region, the growth of microtubules is known to take place
predominantly outwards in radial direction (i.e. to the right). The growth direction of the majority of
EB1 comets is very well captured, see Suppl. Fig. S6(C) and Suppl. Movie 3.

In addition, in Suppl. Fig. S6(D) we visualise the direction of velocities v in this control region with
the help of a rose diagram (angular histogram). It is created by computing the map v 7→ (θ, ρ) that



converts velocities in Cartesian representation to their representation in polar coordinates with θ being
the angle (direction) and ρ the radius (speed). The angular histogram is then created by plotting a
circular histogram of the directions θ using 50 bins. The height of each bar is determined by the relative
number of angles θ in each bin. Note that, in this representation the magnitude of v is not taken into
account and that the shown polar histogram also includes velocities outside the follicular epithelium
(faint regions in the top and bottom right corners in Suppl. Fig. S6(C)), which we neglect for simplicity.

Both the mean velocity, shown in Suppl. Fig. S6(C), and the angular histogram of θ, shown in
Suppl. Fig. S6(D), provide strong evidence that the apparent (average) growth of microtubules in
outward radial direction is captured well by the two-step procedure with the selected parameters. In
Suppl. Fig. S7 we illustrate the mean velocities in the control regions for all the analysed image se-
quences. The results are widely consistent and show outward growth of EB1 comets. Moreover, cell
boundaries of follicle cells are respected and in some cases trajectories of individual EB1 comets are
visible, cf. Suppl. Movie 3.

The computational workflow for the analysis of the captured sequence was as follows. For each
image sequence:

1. Solve image denoising problem (S1) to obtain u.

2. Solve motion estimation problem (S2) based on u to obtain displacements v.

3. Scale displacements according to pixel size ∆x and the time interval ∆t = 0.65 s between con-
secutive frames to obtain approximate velocities v := v∆x/∆t (in µm/s).

4. Create a hand-drawn segmentation mask of the oocyte using Fiji [17]; see also Fig. 2(H).

5. Restrict velocities v to the mask.

6. Compute mean flow v̄ for visualisation purpose, angles θ and speeds ρ, and output statistics.

The scaling step in 3. is due to the chosen discretisation of the spatial and temporal gradient
operators. It is however insubstantial for the analysis of the directionality.

As the main focus of our analysis was the directionality of the movements of EB1-labelled comets,
we computed descriptive statistics of the angles of the estimated velocities. These are circular quantities
and require appropriate methods, for instance, when computing a mean angle. We refer to e.g. [5, 12]
for more details on the following concepts.

Given a vector of angles θ ∈ RN of estimated velocities (e.g. of one cell), we consider the mean
resultant vector vavg ∈ R2, which is given by

vavg = 1
N

N∑
j=1

(
cos θj
sin θj

)
. (S13)

Switching to the complex plane, it can easily be computed as vavg = 1
N

∑
j eiθj , where i is the

imaginary unit. Then, the mean angular direction θavg and the resultant vector length r are given by
θavg = angle(vavg) and r = ‖vavg‖, respectively. The circular variance is related to r and is defined as
S = 1− r.

In Suppl. Fig. S6(F)–(I), we illustrate the analysis of a selected cell. It shows the angular histogram
for directions θ using 50 bins for multiple cells, the mean angular direction, and the mean resultant
vector for the velocities within the segmented oocytes.
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Supplementary Figures

Figure S1 - Image denoising using a specific choice of regularisation parameters. The top rows
show the ten frames of the unprocessed and noisy test sequence uδ used for estimating the regularisation
parameters (magnified views in the second row are taken from the area indicated by the dashed box).
The bottom panels show the denoised sequence u (magnified views in the bottom row are taken from
the area indicated by the dashed box), obtained by approximately solving saddle point formulation (S8)
using the parameters α1 = 0.005 and β1 = 0.75.



Figure S2 - Image denoising step using different regularisation parameters. Depicted are the
first frame of the unprocessed test sequence uδ (upper left, as shown in Suppl. Fig. S1) and the first
frame of the denoised test sequence u for varying parameters α1 and β1 (as indicated). The red frame
(upper right image) indicates the parameter setting that was used to analyse the sequences (same as
in Suppl. Fig. S1).



Figure S3 - Effect of denoising parameter choice on OF motion estimation. Velocities v estimated
by approximately solving (S11) for the denoised sequences for different regularisation parameter choices
(as indicated). Shown is the colour-coded displacement field v between the first pair of frames. For all
results, the same parameter setting for the motion estimation was used (α2 = 0.0005 and β2 = 0.005),
while the parameters for the denoising step were varied as indicated. Black arrows mark flow fields in
which the parameter settings resulted in unsatisfying, i.e. too noisy, signals after the motion estimation.
The red arrows label flow fields that lost signal due to too much regularisation. The black frame (upper
right image) indicates the final parameter setting that was used to analyse the sequences.



Figure S4 - Computational workflow for one image sequence. The figure shows the first five
frames of the original noisy image sequence uδ (top row), the denoised sequence u (middle row), and
the first five colour-coded velocity fields v (bottom row) for a selected cell.
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Figure S5 - Mean velocity fields of oocytes in all analysed sequences. The figure shows the
estimated mean velocities (over time) for each sequence within the corresponding segmentation of the
oocyte. All results were obtained with the parameter setting indicated in Suppl. Figs. S2 and S3.



Figure S6 - Validation of OF-based motion estimation of EB1 comet directionality and grk
mutant oocytes. A) First frame of the denoised sequence u. B) Hand-drawn segmentation mask
of the oocyte (in black). C) Mean velocity (over time) outside the segmented region. D) Angular
histogram based on the directions θ of the velocities v outside the oocyte. The shown result was
obtained with parameters set to α1 = 0.005, β1 = 0.75, α2 = 0.0005, and β2 = 0.005. E) EB1 comets
in grk mutant oocytes (standard deviation projection over 100 frames). Note the detached nucleus (n).
F) Angular histograms of all analysed grk mutant oocytes. The distribution of angles of each analysed
cell is shown in a different colour. G) Angular histogram of aggregated angles of all grk cells. Error
bars indicate standard deviation for each bin. The red radial line indicates the mean angular direction
θavg (average angle) and the black radial line the mean resultant vector; see (S13). H) Average angle
of EB1 directionality in all grk mutant oocytes and the length r of the mean resultant vector (indirectly
proportional to the variance of the distribution). Moreover, the average posterior bias (72%) of all grk
cells is shown. I) Angular histogram with only four bins (30◦-90◦, 90◦-270◦, 270◦-330◦, 330◦-30◦) and
average posterior tip directionality (41%).
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Figure S7 - Mean velocity fields of follicle cells in all analysed sequences. The figure shows the
mean velocity (over time) in the follicle cells region for all datasets. All results were obtained with the
parameter setting indicated in Suppl. Figs. S2 and S3.



Figure S8 - Actin mesh morphology in control and Kin mutant oocytes. A,B) F-actin in fixed
oocyte (encircled in red) traverses the entire cytoplasm. C,D) Oocyte, mutant for khc27(null), displays
a substantial reduction of cytoplasmic actin filaments but exhibits large F-actin bearing vesicles. E,F)
In comparison, khc23(slow) mutant oocytes show a normal actin mesh morphology. Scale bars represent
10µm.



Figure S9 - Cytoplasmic flows in control and mutant oocytes. A-G) Stage 9 oocytes of con-
trol (A), capuEY12344 (B), khc27 (C), khc23 (D), khc17 (E), capuEY12344/capuEY12344,khc17/+ (F) and
capuEY12344/capuEY12344,khc17/khc17 (G) mutant oocytes. Auto-fluorescent vesicles were imaged as
tracers to reveal cytoplasmic motion within the cells. Each image shows maximum intensity projections
(colour coding in H) of ten consecutive frames. The insets depict a 15 × 15µm2 area of each cell to
highlight presence or absence of cytoplasmic flows. If visible, nuclei are labelled (n).



Supplementary Movies
Movie S1 - MT bulk motion in control and capu mutant oocytes (related to Fig. 1). Dynamic
bulk motion of Jup-labelled MTs in control (left) and capuEY12344 mutant oocytes. Images have been
acquired at one frame every 10.4 s. Playback speed is 20 fps (∼ 200× real speed).

Movie S2 - Example of image denoising of EB1 dynamics. Confocal image sequence of dynamic
EB1 comets before (left) and after (right) image denoising. Images have been acquired at one frame
every 0.65 s. Playback speed is 40 fps (∼ 20× real speed).

Movie S3 - OF motion estimation in follicle cells. Confocal image sequence of dynamic EB1 comets
in follicle cells and subsequent OF motion estimation. Images have been acquired at one frame every
0.65 s. Playback speed is 40 fps (∼ 20× real speed).

Movie S4 - Dynamic behaviour of EB1 comets in grk mutant oocytes. Denoised confocal image
sequence of dynamic EB1 comets in a grk2B6/grk2E12 mutant oocyte. The nucleus (n) of the cell is
detached and fails to migrate to the antero-lateral cortex. Images have been acquired at one frame
every 0.65 s. Playback speed is 40 fps (∼ 20× real speed).

Movie S5 - Dynamic behaviour of EB1 comets in control and capu mutant oocytes. Denoised
confocal image sequence of dynamic EB1 comets in control (left) and capuEY12344 mutant oocytes
(right). Images have been acquired at one frame every 0.65 s. Playback speed is 40 fps (∼ 20× real
speed).

Movie S6 - MT bulk motion in control and different Kin mutant oocytes. Dynamic bulk motion
of Jup-labelled MTs in control (first from left), khc27 (second from left), khc23 (third from left), and
khc17 (right) mutant oocyte. Images have been acquired at one frame every 10.4 s. Playback speed is
20 fps (∼ 200× real speed).

Movie S7 - Dynamic behaviour of EB1 comets in control and different Kin mutant oocytes.
Denoised confocal time series of dynamic EB1 comets in control (left), khc23 (middle), and khc27

(right) mutant oocytes. Images have been acquired at one frame every 0.65 s. Playback speed is 40 fps
(∼ 20× real speed).

Movie S8 - MT bulk motion in capu,khcslow/+ and capu,khcslow double mutant oocytes. Dy-
namic bulk motion of Jup-labelled MTs in capuEY12344,khc17/capuRK,GFP (left, transheterozygous mu-
tant for capuEY12344/capuRK and heterozygous for khc17) and
capuEY12344,khc17/capuRT, khc17 (right, transheterozygous mutant for capuEY12344/capuRK and ho-
mozygous for khc17). Images have been acquired at one frame every 10.4 s. Playback speed is 20 fps
(∼ 200× real speed).

Movie S9 - Dynamic behaviour of EB1 comets in capu,khcslow/+ and
capu,khcslow double mutant oocytes. Denoised confocal time series of dynamic EB1 comets in
capuEY12344,khc17/capuRK,GFP (left, transheterozygous mutant for capuEY12344/capuRK and heterozy-
gous for khc17) and capuEY12344,khc17/capuRT, khc17 (right, transheterozygous mutant for capuEY12344/capuRK

and homozygous for khc17). Images have been acquired at one frame every 0.65 s. Playback speed is
40 fps (∼ 20× real speed).

Movie S10 - Recruitment of Kin towards MTs in the absence of the actin mesh. A truncated
KHC fusion protein (aa 1-700, C-terminal GFP fusion), localised in a posterior cloud in control oocytes
(left), and was detected to weakly associate with filamentous MTs in the anterior region of the oocyte.
Loss of capu caused a re-localisation of the protein, which is could now be found to heavily decorate
MTs in the entire oocyte (right). Images have been acquired at one frame every 10.4 s. Playback speed
is 20 fps (∼ 200× real speed).




