

Supplementary Material

The effect of oligomerization on a solid-binding peptide binding to silica-based materials

Rachit Bansal ^{1,2}, Zehra Elgundi ³, Sophia C. Goodchild ¹, Andrew Care ^{1,2}, Megan S. Lord ³, Alison Rodger ¹, and Anwar Sunna ^{1,2,4 *}

- ¹ Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia ; rachit.bansal@hdr.mq.edu.au (R.B); andrew.care@mq.edu.au (A.C); sophia.goodchild@mq.edu.au (S.C.G); alison.rodger@mq.edu.au (A.R); anwar.sunna@mq.edu.au (A.S)
- ² ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW 2109, Australia
- ³ Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia ; z.elgundi@unsw.edu.au (Z.E) ; m.lord@unsw.edu.au (M.S.L)
- ⁴ Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW 2109, Australia
- * Correspondence: anwar.sunna@mq.edu.au; Tel.: +612-9850-4220

$$\Delta \varepsilon_{exp} = \frac{\Delta \varepsilon_{exp} - \frac{\#_{RC}}{\#_{exp}} \Delta \varepsilon_{RC}}{1 - \frac{\#_{RC}}{\#_{exp}}} \quad (1)$$

$$\Delta \varepsilon_{exp} = \frac{\#_{de-randomised} \Delta \varepsilon_{de-randomised} + \#_{RC} \Delta \varepsilon_{RC}}{\#_{de-randomised} + \#_{RC}} = \frac{\#_{de-randomised} \Delta \varepsilon_{de-randomised} + \#_{RC} \Delta \varepsilon_{RC}}{\#_{exp}}$$

$$\Delta \varepsilon_{exp} (\#_{de-randomised} + \#_{RC}) = \#_{de-randomised} \Delta \varepsilon_{de-randomised} + \#_{RC} \Delta \varepsilon_{RC}$$

$$\Delta \varepsilon_{exp} (\#_{de-randomised} = \frac{\Delta \varepsilon_{exp} (\#_{de-randomised} + \#_{RC}) - \#_{RC} \Delta \varepsilon_{RC}}{\#_{de-randomised}}$$

$$= \frac{\#_{exp} (\Delta \varepsilon_{exp} - \frac{\#_{RC}}{\#_{exp}} \Delta \varepsilon_{RC})}{\#_{exp} - \#_{RC}}$$

$$= \frac{\Delta \varepsilon_{exp} (-\frac{\#_{RC}}{\#_{exp}} \Delta \varepsilon_{RC})}{1 - \frac{\#_{RC}}{\#_{exp}}}$$

Equation S1. Derivation of Equation (1) of main text where *RC* denotes random coil, # denotes number of residues, exp denotes the full protein on which data were collected, and de-randomized denotes the core of the protein when the linkers and any extra unfolded residues are removed.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure S1. SOMSpec output for (a) PG, (b) 1×LPG, (c) 2×LPG, (d) 3×LPG, (e) 4×LPG, (f) 1×LPG–0.22 random coil, (g) 2×LPG–0.31 random coil, (h) 3×LPG–0.36 random coil, (i) 4×LPG-0.40 random coil

Figure S2. ΔD vs time for the 3rd overtone of the absorbed (a) 1xLPG and (b) 2xLPG on silica coated QCM-D crystals at various concentrations (3.27–654 nM). The measurement was performed in three steps at a flow rate of 150 µL/mL: baseline formation (1 × PBS buffer), adsorption of protein samples until saturation, and washing (1 × PBS buffer) to remove of unbound protein. Three independent measurements were performed for each concentration.

Figure S3. Langmuir adsorption isotherm for the adsorption of 3×LPG to silica surface. The data were fitted as per a single-site specific binding model, giving a binding affinity/equilibrium dissociation constant (K_D)= 53.23±4.5 nM.

Figure S4. D*f* plot for the binding of 3×LPG to silica . The dotted lines indicate the pure elastic mass and viscosity-density responses indicating the data lie within the viscoelastic region.

	Mw (kDa)ª	$\mathbf{p}\mathbf{I}^{b}$	Charge	GRAVY ^d
Protein				
PG	21.363	4.58	-14.0	-0.56
1×LPG	23.443	4.69	-13.8	-0.69
2×LPG	25.797	4.94	-10.5	-0.78
3×LPG	28.151	5.25	-7.3	-0.85
4×LPG	30.504	5.80	-4.1	-0.91
Linker region				
without PG				
1×L	3.232	10.94	3.2	-1.27
2×L	5.586	11.38	6.4	-1.43
3×L	7.939	11.50	9.6	-1.50
4×L	10.293	11.57	12.9	-1.54

Supplementary Table S1. Truncated derivatives of 4×LPG with different linker repeats and their physicochemical properties.

^a Theoretical molecular weight (Mw)*

^b Theoretical isoelectric point (pI)*

^c Theoretical charge at pH 7.0*

^d Theoretical grand average hydropathicity (GRAVY)⁺

* Values calculated using Protein calculator v3.4 (http://protcalc.sourceforge.net/)

⁺Values calculated using Protein GRAVY

(https://www.bioinformatics.org/sms2/protein_gravy.html)