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Table S1. DRI_NGRIP2 age scale in both year before 1950 (yb1950) and year (BCE/CE). Shading 
identifies approximate periods in the NGRIP2 and NEEM cores of high (>3σ above background) 
non-sea-salt sulfur concentration indicating elevated volcanic fallout. 
 

yb1950 (ybp) BCE(-)/CE(+) Approximate Date 
1948 +2 Jan-01 

1948.25 +1 Oct-01 
1948.5 +1 Jul-01 

1948.75 +1 Apr-01 
1949 +1 Jan-01 

      
1949.25 -1 Oct-01 
1949.5 -1 Jul-01 

1949.75 -1 Apr-01 
1950 -1 Jan-01 

1950.25 -2 Oct-01 
      

1989 -40 Jan-01 
1989.25 -41 Oct-01 
1989.5 -41 Jul-01 

1989.75 -41 Apr-01 
1990 -41 Jan-01 

1990.25 -42 Oct-01 
1990.5 -42 Jul-01 

1990.75 -42 Apr-01 
1991 -42 Jan-01 

1991.25 -43 Oct-01 
1991.5 -43 Jul-01 

1991.75 -43 Apr-01 
1992 -43 Jan-01 

1992.25 -44 Oct-01 
1992.5 -44 Jul-01 

1992.75 -44 Apr-01 
1993 -44 Jan-01 

1993.25 -45 Oct-01 
1993.5 -45 Jul-01 

1993.75 -45 Apr-01 
1994 -45 Jan-01 

1994.25 -46 Oct-01 



 

Figure S1. Selected new and previously published measurements of volcanic-fallout-related 
parameters in the six Arctic ice cores (Fig. 1) evaluated for this study: A. NGRIP2 (this study 
and (1)), B. NEEM ((1, 2), C. GISP2 (3-5), D. GRIP (6, 7), E. Dye3 (6), and F. Akademii Nauk 
(this study). Depth ranges correspond approximately to 25 to 50 BCE after synchronization 
at 43 BCE to the DRI-NGRIP2 age scale (8). 



  

  

 

  

Figure S2. Selected continuous elemental measurements of NGRIP2 ice (388 to 391.5 m) 
used for annual layer counting. Shown are nssS, the ratio of nssS/ssNa, ssNa, cerium (Ce), 
magnesium (Mg), and nssCa, where nssS is non-sea-salt sulfur, ssNa is sea-salt sodium, and 
nssCa is non-sea-salt calcium. Also shown are mid-winter (ostensibly January 1) annual layer 
picks corresponding to 29 BC to 49 BCE on the DRI_NGRIP2 age scale (8). Ce and nssCa are 
primarily continental dust indicators while Mg includes both sea-salt and dust components. 
nssS reflects both volcanic fallout and background marine and terrestrial biogenic emissions. 



  

  

Figure S3. Volcanic fallout surrounding the 43 BCE Okmok II eruption in the A. NGRIP2 and B. 
GISP2 ice cores. Shown for NGRIP2 are continuous measurements of liquid conductivity (this 
study), field DEP (1), nssS (this study) and medium (2.5 to 5 μm) and large (5 to 10  μm ) 
insoluble particle counts (this study). Shown for GISP2 are discrete measurements of Δ33S 
(±2σ) (this study), discrete sulfate (4), ECM (3), and laser light scattering (9). Tephra used to 
identify Okmok II as the source eruption were filtered from an ice sample extending from 
481.06 to 481.16 m depth (vertical shaded bar) from the GISP2 core.  



 

  

Figure S4. Images of selected tephra shards extracted from GISP2 ice (481.06 to 481.16 m) 
and geochemically tied to the Okmok II eruption that started in early 43 BCE. 



  

  

Figure S5. Tephra geochemistry comparisons between shards extracted from GISP2 ice 
(481.06 to 481.16 m) and potential NH source eruptions including Etna, as well as large 
eruptions thought within dating uncertainties to have occurred in the 1st century BCE. Filled 
circles show measurements (this study) of GISP2 and Okmok reference tephra (Materials 
and Methods; Dataset S02). Shaded regions show tephra reference measurements from 
other potential source volcanoes: Etna, Italy (10, 11); Chiltepe from Apoyeque, Nicaragua 
(12, 13); Masaya Triple Tuff (MTL), Nicaragua (12); A-2000, Askja, Iceland (14); White River 
Ash northern lobe (WRAn), Churchill, Canada (15); Furnas, Azores (16). Gray shading shows 
prior measurements of tephra samples from the first (i.), second (ii.) and third (iii.) eruption 
phases of Okmok II (17). Analytical precision for the GISP2/Okmok measurements is 
illustrated by the red crosses representing 2σ of repeated analyses of the secondary glass 
standards (high Si – Lipari, low Si - Laki); for comparison, accepted values for Lipari and Laki 
(2σ) (18) are shown by the grey crosses.  
 



Figure S6. Annual and seasonal 43 BCE CESM-modeled (Materials and Methods) 
temperature and precipitation anomalies relative to the 60 to 46 BCE reference period with 
no volcanic forcing. Dots show areas where the anomalies are not significant (2σ) relative to 
the background variability. 



  

Figure S7. As in SI Appendix, Fig. S6 but for 42 BCE. 

    



 

Figure S8. Seasonal 43 BCE CESM-modeled (Materials and Methods) temperature and 
precipitation anomalies in response to radiative forcing from the early 43 BCE Okmok II 
eruption. Outlines show (red) Roman provinces north of the Mediterranean, (orange) 
Ptolemaic Kingdom and Roman provinces south of the Mediterranean, and (green) the Nile 
River drainage. Anomalies and precipitation change are relative to the 60 to 46 BCE 
reference period with no volcanic forcing. Dots show areas where the anomalies are not 
significant (2σ) relative to the background variability. 



 

  

Figure S9. As in SI Appendix, Fig. S8 but for 42 BCE. 
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