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1. Analytical model for the bubble trap

Incident vortex beam, scattered field and acoustic force To calculate the 3D acoustic force exerted on the
bubble arbitrarily positioned in the ultrasonic field we used the method developed in Ref. (1). In brief, the
monochromatic incident beam is expanded in a set of spherical harmonics in the spherical basis centered on
the bubble (r, θ, ϕ) as:

φ = φ0e
−iωt

∞∑
n=0

n∑
m=−n

Amn jn(kr)Y m
n (θ, ϕ), [1]

where φ is the complex acoustic velocity potential related to the real acoustic pressure change as p =
−ρ<

(
∂φ
∂t

)
. ρ = 1000 kg/m3 is the fluid density, jn are spherical Bessel functions of the first kind,

Y m
n = Pmn (cos θ)eimϕ are complex spherical harmonics that involve associated Legendre polynomials, Pmn ,
ω = 2πf is the angular frequency, k = ω/c is the wavenumber in the liquid medium and c = 1485 m/s the
speed of sound at 20◦ Celsius in water. The beam shape coefficients Amn describe the incident ultrasonic field
in the spherical basis and can be accurately calculated for focused vortex fields for a specified transducer
geometry (2). The theoretical pressure field is shown in Fig.1A (modulus and phase) and compared to
hydrophone measurements in Fig.1 B.

The scattered field is expanded in the same basis, leading to a potential in the far-field (r � λ) written as

φs = φ0
a

r
ei(kr−ωt)fs(θ, ϕ), [2]

fs(θ, ϕ) = 1
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∞∑
n=0

∑
|m|<n

i−n−1RnA
m
n Y

m
n (θ, ϕ). [3]

fs(θ, ϕ) is the complex scattering form function. It was used to plot the polar diagrams in Fig.2C and
Supplementary Figure 5. The scattering coefficients Rn for a bubble are those of a fluid spherical object
(see e.g. Ref.(3), where n is the order of the oscillating multipole (n = 0 for monopolar, n = 1 for dipolar,
n = 2 quadrupolar and so on)

In a final step, following the method described in Ref.(1), the force (nonlinear) is calculated from the
total field (linear) for any location of the bubble relative to the incident vortex beam. This assumes that
the bubble undergoes linear oscillations, which has been confirmed experimentally by the good agreement
in between the model and force measurements (Figure 2A), but also from the detected bubble echos
(Supplementary Fig.5). A plot of the vertical and lateral forces are shown in Figure 1D and E, as functions
of the vertical (z) and lateral (x) displacements respectively. The vertical force, Fz, is also plotted as a
function of the bubble radius, a, in Fig.2 B.
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Force on a small bubble The mechanisms underpinning the acoustic force and the relevant physical
quantities involved are difficult to identify from the modal decomposition presented so far. In the following,
we will restrict the discussion to small bubbles relative to the driving wavelength, a/λ� 1 (long wavelength
limit), for which an explicit expression for the nonlinear force can be given (4):

~F = −1
2

{
<(αm) 1

2ρc2
~∇|p|2 −<(αd)

1
2ρ
~∇|~v|2

}
, [4]

where p and ~v are the first order acoustic pressure and velocity fields taken at the bubble center respectively.
< denotes the real part of complex quantities. αm and αd are two acoustic strength parameters associated
to the monopolar and dipolar oscillation modes of a spherical particle. Eq.[4] is restricted to the "gradient"
force exerted on a bubble. This component dominates the "scattering" force for configurations involving
focused beams (with non-zero energy gradients) (4). The strength parameters can be determined from a
Taylor expansion of the scattering coefficients R0 and R1 respectively (Eq.[3]), taking a/λ� 1. For the
special case of a bubble, their real part can be expressed as (5):

<(αm) = 4
3πa

3 K

Kb

ω2
0(ω2 − ω2

0)
(kaω2)2 + (ω2 − ω2

0)2 [5]

<(αd) = 4πa3
(
ρb − ρ
2ρb + ρ

)
∼ −4πa3. [6]

K = ρc2 and Kb = ρbc
2
b are the propagation medium and gas bulk modulii respectively, ρb the gas density

and ω0 = (3Kb/ρa
2)1/2 the natural oscillation frequency of the bubble (or Minnaert resonance frequency).

This frequency neglects thermal dissipation in the bubble and surface tension. Similarly, the expression
for the strength parameters αm and αd has been obtained in the case of an inviscid, non-heat conducting,
external liquid. Corrections have recently been given using a similar formalism, making them easy to
implement in this derivation (6). Nevertheless, such corrections will be discarded for the purpose of the
present discussion.

The bulk modulus of the gas is much weaker compared to that of the fluid such that <(αm)/<(αd) ∼
K/Kb ∼ 103 for bubbles off-resonance. Therefore, in the long wavelength regime, the acoustic force is
generally and correctly assumed to be a result of monopolar volume oscillations of the bubble alone (first
term in Eq.[4]). For instance, using Eq.[5] in Eq.[4], we have retrieved the expression for the primary
Bjerknes force as derived by Crum and Prosperetti when thermo-viscous damping effects are neglected
(7). A bubble located off-axis of the vortex beam will undergo monopolar oscillations, and will similarly
be driven by a force proportional to |~∇p| towards, or away from, the propagation axis, for bubbles driven
above or bellow resonance respectively. When the bubble reaches the propagation axis, z, vortex beams
create the specific condition for which |p| = 0 and ∂|p|2

∂z = 0 simultaneously at r =
√
x2 + y2 = 0, which

could be termed a nodal line, or screw dislocation line (8). Under these conditions, the axial force exerted
by a vortex beam written as p = p̃(r, z)ei(mθ−ωt), where m quantifies the beam helicity, reads

Fz = <(αd)
4ρω2

∂

∂z

∣∣∣∣∂p̃∂r
∣∣∣∣2 , [7]

for a bubble (or any other spherical object) located on-axis (r = 0). The pushing force will be much weaker
than the lateral trapping force (by approximately 3 orders of magnitude). It’s magnitude will strongly
depend on the capacity of the trapping device to maximize both the lateral and axial gradients of the
acoustic pressure field. The expression of <(αd) also indicates that the pushing force is largely insensitive
to the density of the gas. It scales with the bubble volume a3, making the trapping vertical position against
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buoyancy unaffected by changes of the bubble size. This remains true as long as the effect of acoustic
streaming flows can be neglected (see discussion bellow).

It is now convenient to express the axial force acting on a bubble using a model for the incident beam
used in our experiments. Laguerre-Gaussian (LG) modes are a useful description of vortex beams in the
paraxial approximation (i.e. weak focusing) (9, 10). Setting the azimuthal and radial index of the LG mode
to respectively 1 and 0, the pressure field can be modelled as:

p̃(r, z) = PLG

(
rw0
w(z)2

)
exp

(
− kr2z

2(z2 + z2
R)

)
exp (i[kz + g(z)]) [8]

where PLG = p0
√

2 exp[1/2] is a constant proportional to the maximum pressure measured on the vortex
ring at focus, p0. wz = w0(1 + (z/zR)2) and w0 are the beam waist and beam waist at focus (z = 0)
respectively while zR = kw2

0/2 is the Rayleigh distance. g(z) describes the phase shift of π as the wave
passes the focus, also known as the Gouy phase. Using Eq.[8] in Eq.[7] gives the pushing force acting on
the bubble:

FLG = −P
2
LG

ρω2
z

z2
R

w2
0
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2
LG

ρω2
z

z2
R

w2
0

w(z)6 . [9]

The theoretical LG mode and the experimental lateral pressure scan at the focal plane are compared in
Supplementary Figure 1A. The agreement is good near the vortex core (with the beam waist chosen as
w0 = 1.025λ (11)), but the LG model cannot capture effects of diffraction (e.g. secondary lobes) seen in
experiment or with a spherical decomposition of the beam (see Eq.[1] and Figure 1D in the main text), as a
consequence of the paraxial approximation. This is also confirmed by looking at the force profile shown in
Supplementary Figure 1B. While the correct magnitude of the pushing force is predicted by Eq.[9] (for
a = 5 µm and p0 = 1 MPa), it shows a different evolution with z. In particular it predicts a stiffer axial
trap than that observed with the full analytical model (1, 2). Nevertheless, the LG model is useful in
predicting the maximum pushing force, FLG, found downstream from the focus at zmax = zR/

√
5 and reads

FLG = C
a3p2

0
ρω2

(
λ

w4
0

)
. [10]

Here C = 4 exp [1]
√

55
/108 ∼ 6 is a calculation constant. This equation indicates that to retain a maximum

pushing force, it is necessary to minimize the beam waist, w0, chosen as close as possible to λ, the theoretical
limit being w0 ∼ λF/D ∼ λ/2 where F and D are respectively the focal length and aperture diameter of
the spherical transducer.

It is important to additionally note that the position of maximum pushing force is size dependent. It will
progressively shift from z = 0 for large bubbles, in a regime dominated by the "scattering" component of
the force (Fig.2 A), to z ∼ zR, for small bubbles, in a regime dominated by the "gradient" component of the
force (Supp. Fig.1 B).

Viscous drag due to acoustic streaming The ultrasonic beam that propagates in the fluid is affected by
thermo-viscous absorption. Therefore, a small amount of momentum is transferred to the bulk leading
to the rise of a streaming flow, ~vs, which is also a nonlinear quantity induced by the propagating linear
field (12). The exact modeling of this flow is usually mathematically involved and highly dependant on the
ascribed hydrodynamic boundary conditions. Nevertheless, it will be quadratic with the driving acoustic
pressure and its component along z will be written:

us = p2
0χs [11]

where χs will be a function mainly determined by the acoustic frequency , medium attenuation, properties
of the acoustic beam and, importantly, of the hydrodynamic boundary conditions. From the qualitative
measurements presented in the following section (see Supplementary Figure 4B), the acoustic streaming
flow has been estimated to be us ∼ 4.5 mm/s for p0 = 0.7 MPa and a duty cycle of 44%.
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Our measurements also indicate that us varies slowly with the lateral, x, and axial, z, distance from
the focus, and can thus be assumed to be constant for 0 < z < 2 mm. In that region, the bubble will be
affected by a viscous drag:

Fs = Dus, [12]

where we have assumed the drag coefficient to be D = 6πµa, for bubbles with presumably contaminated
surfaces and where µ ∼ 10−3 Pa·s is the viscosity of water.

Critical bubble radius and trap behaviour Given the timescale we observed for bubble acceleration in our
force balance experiments, τ ∼ 1 ms, we can safely neglect inertial effects (bubble acceleration, added-mass
and Basset forces) and the bubble will obey a simple balance:

FB = Fz + 6πµa(us − ub) [13]

in between the bubble buoyancy, acoustic pushing force and viscous drag respectively, where ub is the
bubble velocity which is equal to zero at equilibrium. The three forces are plotted in Supplementary Figure
1C, for p0 = 0.5 MPa and z = zmax . As previously discussed, the buoyancy and acoustic force both scale
with the bubble volume, a3. However for small bubbles, the drag force arising from acoustic streaming
progressively dominates the force balance as it decreases slower with a.

The critical radius ac for which the acoustic force is equal to the viscous drag is found to be around
60 µm (in agreement with our experimental results, Fig.2B in the main text). For bubbles of size greater
than ac, the trap dynamics will be dictated by the establishment of the acoustic force, over a few acoustic
cycles (microseconds), and can be considered instantaneous in Eq.[13]. The buoyancy can be simply and
rapidly balanced by adjusting the driving pressure, p0, and the equilibrium position will remain stable
with changes in bubble size. However, ac is found to be close to the biggest radius admissible for the
long wavelength regime to hold, and, rapidly, the trapping position will depend on the bubble size again
(Fig. 2B). For bubble sizes well bellow the critical radius, the balance will be dominated by the streaming
flow which is generated in a much slower timescale. The build-up of the streaming flow will depend on
various parameters including the fluid viscosity, the rate of absorption of the incident beam and boundary
conditions. Our observations indicate a much slower timescale, tens to hundreds of milliseconds. The trap
behaviour in this regime can become difficult to adjust for rapidly shrinking bubbles. Mitigating the viscous
drag to facilitate the trapping of micron size bubbles will ultimately depend on the possibility to reduce
χs in Eq.[11] by changing the driving frequency, beam waist or boundary conditions. A definitive answer
requires further investigation and numerical modelling.

2. Experimental characterization of the bubble trap

Acoustic force At each equilibrium position, the acoustic pushing force Fz is equal in magnitude to the
buoyancy, FB. For varying driving amplitudes p0, we measure both the bubble radius a and position, z
relative to the acoustic focus. By computing the quantity Q = FB/p

2
0, we can compare our measurements

to the corresponding theoretical curve. Because of the 44% emission duty cycle we used, the theoretical
force curves must be reduced by the same amount in order to be compared with the experiments. Our
experimental uncertainty, δQ, is essentially due to the precision in measuring a, for which δa/a is typically
in between 1% and 3% for big (a ∼ 300 µm) and small (a ∼ 100 µm) bubbles respectively and to the
systematic pressure measurement error introduced by our hydrophone, δp0/p0 = 10%. This gives a total
error δQ = 3δa/a+ 2δp0/p0 lying in between 20% and 30% for the range of bubbles we studied. Though the
systematic error seems large, reversely, by performing a statistical analysis on the force measurement curves
on a large number of big bubbles constitutes a possibility to calibrate the pressure field of a transducer
with a reduced error. For n = 8 bubbles (a > 150 µm), the best fit of the experimental force curves gives
the amplitude of the drive pressure p0 that we used to plot the theoretical curves in Figure 2 A-B and E.

The vertical positioning precision and bubble and relative fluctuations were analyzed for a bubble of
radius a = 100 µm. In Supplementary Figure 3B we show that by increasing the driving signal by increments
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of 10 mVpp (1 mVpp), the bubble displacement of the bubble is 200 µm (50 µm) with typical oscillations of
10 µm around the equilibrium position.

Acoustic streaming The acoustic streaming reaches a steady state after tens of milliseconds and is readily
observable by tracking the motion of any small object floating in the vicinity of the flow. The trajectories
of a few natural impurities, present in the propagation medium, and of size smaller than 2 µm are shown
in supplementary Figure 4 A, for p0 = 0.7 MPa and a duty cycle equal to 44%. In the absence of
ultrasound, these particles have a low density contrast with the fluid bulk and can therefore serve to assess
an approximate value of the streaming flow velocity, us. In Figure 4B we plot the vertical particle velocity,
vz, of 5 selected tracers circulating near the beam focus, (x, z) = (0, 0). We estimate the streaming flow
velocity to be near us = vz ∼ 4.5 mm/s which is lower than the value vz = 8 mm/s necessary to retrieve
the total pushing force measured for small bubbles including a Stokes’ drag (Fig.2 B, dashed-curve). The
remaining discrepancy may arise from the non-ideal geometry of the tracers used in the evaluation of us,
but also from an additional dissipation of the acoustic momentum flux in the boundary layer surrounding
the bubble surface (6).

Experimental measurement of the far-field scattering diagram The far-field scattering function, fs(θ, ϕ)
(Equation [3]), is axisymmetric for bubbles located on the propagation axis (fs(θ, ϕ) = fs(θ)). The
magnitude of the scattering coefficients Rn and polar plots of the scattering form function are shown in
Supplementary Figure 5 (B-C). For small bubbles, the dominant scattering modes are monopolar and dipolar.
However, the broken symmetry induced by the helicoidal nature of the wavefronts excludes monopolar
oscillations for on-axis bubbles (See discussion above). This explains the dominant dipolar oscillation for a
bubble of radius a = 50 µm, Supplementary Fig. 5B). For a bubble of radius a = 270 µm, the perimeter
becomes comparable to the acoustic wavelength and higher order multipoles can be excited in the so-called
Mie scattering regime. The bubble tends to scatter predominantly in the bubble rear (θ < 90◦). To measure
this enhanced scattering we exploited the good positional stability of the trap and the slow dissolution rate
of large bubbles (a > 200) that would not significantly shrink over a course of a few minutes. It was thus
possible to scan the scattered pressure field using a hydrophone (Supplementary Fig.5 D). Nevertheless, in
order to isolate the very weak echo emitted by a single microbubble, predicted to be more than 2 orders of
magnitude lower than the incident pressure field, several precautions were taken. First, the hydrophone
was positioned in the far field, approximately 25 mm away from the bubble centre. The tone burst was
reduced to 5 acoustic cycles in order to distinguish the bubble echo from other direct arrivals from the
acoustic transducer or reflections in the water tank. The total propagation time of the wave scattered by
the bubble towards the hydrophone was estimated to be near 50 µs. It was hence necessary to retain a long
100 µs pulse repetition period. Despite the resulting 2% duty cycle for the excitation pattern, we secured
conditions for which a sufficient trapping force was obtained by increasing the incident trap pressure to
p0 = 2.25 MPa. The echos detected from a single bubble of radius a = 270 µm are shown in Supplementary
Figure 5 E, for several positions of the hydrophone, either on the bubble front or rare. From the amplitude
of the echos we extracted a measure of the scattered field (ps ∼ 5 kPa). The distance R to the bubble
centre was calculated from the time of arrival of each echo. Using Eq.[3], we computed the experimental
far-field scattering functions shown in Fig.2 C.

3. Position-controlled bubble dynamics in the presence of a wall

To analyze the bubble dynamics of an isolated bubble, we combined the acoustical trap setup with a secondary
source of ultrasound (Hesentec) driving the oxygen bubbles with the pressure change p′ = p′0 sin(2πf ′t) at
a lower frequency f ′ = 28.2 kHz. If the pressure field associated with the low-frequency wave is strong,
or the bubble close to its resonant size (aM = 115 µm at f ′), the vertical trapping position z is affected
by an additional acoustic force arising from the bubble volume oscillations forced by the low-frequency
field (Eq.[1] in the main text). We observed that the bubble was attracted towards the boundary when it
was larger than its resonant size. However, in most situations the primary trap remained stronger and a
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readjustment of the trapping power allows to move the bubble back to its initial position. Conversely, if the
bubble is smaller than resonance, it is pushed away from the wall by the combined effect of the pushing
beam and the secondary force. This could either result in the establishment of a new equilibrium position
further down the trap, but also to the loss of the trapped bubble.

The high speed camera was set to acquire 300,000 frames per second. The induced radius oscillations,
R(t) = a(1 + ∆a

a sin(2πf ′t + Φ) are extracted from the raw videos by subtracting a background image to
each frame, applying a binary threshold and computing the bubble area. The acquisition of an initial
background image with the bubble removed is particularly important in the presence of a wall that projects
a shadow on the side-view images. An example of an oscillating bubble radius with time is shown in
Supplementary Figure 6 A. From the Fourier transform of R(t) we can extract the oscillation magnitude
∆a at the driving frequency f ′ (Supplementary Fig.6 B). It is also seen that the oscillations are linear under
the sufficiently low driving pressure amplitude. The average radius a decreases overtime driven by the
excess Laplace pressure inside the bubble. It is hence possible to perform successive measurements of the
bubble dynamics with a constant forcing and frequency, but for a bubble of changing size (Supplementary
Fig.6 B). Examples of reconstructed resonance curves are shown in Supplementary Fig.6 D and Figure 3 B.

Free bubbles For small amplitude radial oscillations x = ∆a/a << 1 of a freely suspended bubble, the
dynamics can be compared with that of a one-dimensional damped harmonic oscillator (13):

˙̇x+ 2βẋ+ ω2
0x = −p′0 sin(2πf ′t)/ρa2. [14]

The resonant frequency is given by ω2
R = ω2

0(1− 2β2

ω2
0

) where ω0 = (αpA/ρa2)1/2 is the natural undamped
oscillation frequency, α is the polytropic coefficient and pA = 105 Pa the ambient pressure. The expression
for the natural oscillation frequency was originally obtained by Minnaert, valid for sufficiently large bubbles
for which surface tension effects are negligible. Equivalently, we can define the Minnaert resonance radius,
aM = 1

2πf ′ (αpA/ρ)1/2 related to our secondary sound wave of frequency, f ′, that supposes an adiabatic gas
expansion process (α = γ) where γ is the specif heat ratio. aM was used to normalize the experimental
curves and fits in Fig.4 B and Supplementary Fig.6 D. The total damping coefficient β incorporates the
dissipation occurring in the process of thermal attenuation in the bubble core, acoustic wave radiation and
viscous dissipation in the fluid bulk (13). The thermal losses are mainly responsible for the damping in the
range of bubble radii investigated here (see Supplementary Fig.6 E.). Therefore, in fitting the measured data,
we hence assume three independent fitting parameters: the "thermal viscosity" introduced by Prosperetti,
µth related to the oscillator damping as β = 2µth

ρa2 , the natural frequency ω0 and the driving acoustic pressure,
p′0 of the secondary source of ultrasound. We make a step further in simplifying the problem by assuming
that µth is radius independent and takes as average value µth = 0.038 Pa·s (Supplementary Fig.6 F). In
doing so, we focus on determining an average damping coefficient without identifying the exact nature of the
thermal mechanisms at play, which is sufficient for the main scope of detecting the influence of an adjacent
wall. From the fit we obtain respectively ω0/ω

exp
0 = 99 %, µth/µexpth = 73 % and p′exp0 = 760 Pa for a bubble

isolated in the bulk using the trapping setup (we had no initial pressure calibration for the secondary
acoustic source). Equivalently, the fitted resonance radius is very close to the theoretical value obtained
by Minnaert. However, according to Prosperetti’s model, it was expected to observe a 4% shift towards a
lower resonant radius with the correct calculation of the polytropic coefficient and including the thermal
damping process. The damping also reads a higher value βexp relative to the model. Both observations
possibly find an explanation in the rapid contamination of the bubble interface that can support additional
elasticity and higher dissipation.

Presence of a wall The effect of an adjacent wall on bubble dynamics is still matter of debate, primarily
because of the scarce experimental data available, complications owed to bubble encapsulations, and limited
efforts to model the behavior of the bubble near a wall. In particular, to our knowledge, the work of
Doinikov et al is the only one to consider a compliant boundary (14). In the linear regime, the resonance
frequency for a bubble near a wall, ωw, is found to be affected as ω2

w = ω2
0/ε, where for soft boundaries ε is
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a function of the separation distance between the bubble and the wall, the density and the thickness of
the elastic layer. Computing the resonance radius following Doinikov et al with our experimental settings,
we do find an approximate 1% shift of the resonant radius relative to the unbounded free bubble case,
but towards the smaller radii which is in contradiction with the shifts shown in Fig.4 B, where we find
a/aM = 1.007 and 1.015% for the 3 and 4% agarose gels respectively. A limitation in the theoretical work
we referred to is to consider small bubbles compared to the separation distance, a/d << 1. Here, the
resonance radius is such that a ∼ d which seems to have additional implications on the bubble dynamics.

Supplementary Information

Supplementary Video 1: Microbubble single-beam trap

Supplementary Video 2: 3D manipulation of a single microbubble

Supplementary Video 3: Microbubble manipulation in crowded environments

Supplementary Video 4: Position-controlled microbubble dynamics with an acoustic trap

Supplementary Video 5: Payload release from nanoparticle-coated microbubbles
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Fig.S 6. Isolated bubble resonance curve excited by a secondary source of ultrasound. (A) Time evolution of the bubble radius trapped by the tweezers setup and
excited by a secondary source of ultrasound. (B) Fourier transform of the curve in A. (C) Same as (B) for all the subsequent bubble sizes at rest a that fall in between 50
and 150 µm for a bubble shrinking by dissolution. (D) Free bubble’s resonance curve constructed from the bubble dynamics measured in the frequency spectrum in (D) at
the driving frequency f ′ = 28.2 kHz. The black curve is obtained with a linear oscillator model for the dynamics (Methods). The blue curve is the best-fit to the data points.
The curves are normalized by the theoretical Minnaert resonance frequency, aM = 115 µm. (E) Damping coefficient β of the oscillator and its three main contributions. (E)
Computed "thermal viscosity" in the investigated bubble size range.
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