

Supplementary Information for

Functions of paralogous RNA Polymerase III subunits POLR3G and POLR3GL in mouse development

Xiaoling Wang,^{a,1}, Alan Gerber^{a,2}, Wei-Yi Chen^{a,3} and Robert G. Roeder^{a,4}

^aLaboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA

¹Present address: Renal Research Institute, 315 E 62nd street, New York, NY, 10065 ²Present address: Department of Chemistry and Pharmaceutical Sciences, VU University

Amsterdam, De Boelelaan 1083, 1081 HZ Amsterdam, The Netherlands ³Present address: Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan

⁴Corresponding Author:

Robert G Roeder 212-327-7600 **Email:** <u>roeder@rockefeller.edu</u>

This PDF file includes:

Supplementary Figures (Figures S1 to S4) Supplementary Tables (Table S1 and S2)

Supplementary Figures

Fig. S1. **(A)** Overexpression of either POLR3G or POLR3GL does not alter stem cell morphology as observed microscopically. **(B)** RT-qPCR analysis of the ESC pluripotency marker *Pou5f1* and expression of Pol III-transcribed *Rn5S*, *Rn7SK* and *RnU6* genes in control (E14TG2a w/ empty vector) and in POLR3G- and POLR3GL-overexpressing cells. The results indicate that overexpression of POLR3G or POLR3GL does not alter expression of Pol II-transcribed pluripotency marker *Oct4* but slightly, moderately or significantly increases expression, respectively, of the *Rn7SK*, *RnU6*, *and Rn5S* genes, consistent with earlier results indicating in vitro transcription of these genes by human Pol III isoforms (14). However, and most importantly, the differences for these genes between POLR3G- and POLR3GL-overexpressing cells are marginal.

Fig. S2. Early RNA expression of *Polr3g* and *Polr3gl* genes detected by single cell to CT experiments from 2-cell stage to blastula stage embryos. Each dot represents one embryo. The X-axis shows the CT value for *Gapdh*. The Y-axis shows the the CT value for *Polr3g* (blue) or *Polr3gl* (red). *Gapdh* expression is increased during early development (as reflected by reduced CT number).

Fig. S3

Fig. S3 and S4. Generation and validation of *Polr3g* (Fig. S3) and *Polr3gl* (Fig. S4) conditional knockout mice.

(A) Diagram of gene targeting and mice crossing procedures. Both targeting vectors were generated by inserting loxP sites (blue triangle) flanking exon(s) and a neomycin cassette (*neo*) flanked by FRT sites (green triangle). Locations of PCR primers are shown by arrows. (B) "Knockout-first" alleles (fn alleles) were confirmed by Southern blot analysis using both external and neo probes. (C) "Knockout-first" alleles (fn alleles) were also confirmed by PCR genotyping. (D) Mice with fn alleles were crossed to transgenic FLP mice to generate conditional knockout (CKO) mice (f allele), which were confirmed by PCR genotyping. Both *Polr3g* and *Polr3gl* fl homozygous mice were viable without any notable defects. (E) The knockout potentials of f allele mice were further tested by crossing to transgenic EIIA-CRE mice. After breeding one more generation, it was possible to produce heterozygous Δ alleles. PCR genotyping confirmed the deletion sites.

Supplementary Tables

Table S1. MS analysis showing proteins differentially co-immunoprecipitated with POLR3G versus POLR3GL antibodies.

Table S2. Summary of number of reads and peaks detected in ChIP-seq experiments.

Dataset S1. Lists of peaks detected in Fig. 2C.

Dataset S2. Lists of peaks detected in Fig. 2D.

Dataset S3. Lists of primers

Table S1: Summary of non-Pol III proteins detected in immunoprecipitates ofPOLR3G or POLR3GL

Detected only in POLR3G pull-down						
Accession	Description	Score	Coverage			
191765	alpha-fetoprotein	52.69	3.11			
81878656	L-threonine 3-dehydrogenase, mitochondrial precursor	3786.922	63.81			
62201487	Glyceraldehyde-3-phosphate dehydrogenase [Mus musculus]	2861.807	35.44			
6756039	tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, theta polypeptide [Mus musculus]	289.5953	13.47			
123228024	peptidyl prolyl isomerase H [Mus musculus]	70.932	8.86			
149257773	PREDICTED: peptidyl-prolyl cis-trans isomerase A-like [Mus musculus]					
148685494	mCG22383, isoform CRA_b [Mus musculus] (TIM_phosphate_binding)	102.972	10.29			
197725012	(ubiquitin) Chain B, Crystal Structure Of Human Amsh- Lp Dub Domain In Complex With Lys63-Linked Ubiquitin Dimer	463.5471	50			

Detected only in POLR3GL Pull-down					
Accession	Description	Score	Coverage		
29612546	Transcription elongation factor B (SIII), polypeptide 3 [Mus musculus] (Elongin-A)	33.44	1.94		
74211667	Hsp73	474.8507	24.59		

Table S2: Summary of number of reads and peaks detected in ChIP-seq experiments

ChIP-seq experiment	Total reads	Uniquely aligned reads	Numb Called ^a	ber of peaks Validated ^b	Mapping Efficiency (%)
input_ES	30,275,598	18,465,288			61
3C_ES	19,956,879	12,147,386	1,021	<u>317^c</u>	61
3G_ES	31,651,234	19,674,803	533	243 ^d	62
3GL_ES	35,987,871	21,016,069	195	<u>13^d</u>	58
Pol II_ES	37,389,466	25,369,634			68
input_pMEF	29,392,063	14,496,555			49
3C_pMEF	29,360,199	18,843,549	397	<u>275^e</u>	64
3G_pMEF	30,934,711	20,319,371	272	<u>264^d</u>	66
3GL_pMEF	30,402,871	20,000,609	190	<u>177^d</u>	66
Pol II_pMEF	34,423,268	24,648,991			72

^a peak called by Homer program ^b identified peaks were examined by IGV visualization to set the thresholds of

Normalized Tag Count for each ChIP-seq experiment. ^c the threshold of Normalized Tag Count is 260 ^d the threshold of Normalized Tag Count is 15 ^e the threshold of Normalized Tag Count is 40