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Supporting Information Text

Model Comparison. Our model, which is the same as in (1), differs from the model of (2) in the following aspects:

1. Probably the most important difference is the tidal model. We use the conventional Darwin-Kaula constant Q model
(3). In this model the tidal potential is expanded in a Fourier series and the response to each term is given a phase
delay to model dissipation, by analogy to the damped harmonic oscillator. The explicit form builds in considerable
constraints from orbital mechanics. There is little observational evidence to constrain the phase delays, but results from
the analysis of lunar laser ranging (LLR) data are consistent with the Darwin-Kaula choice to set all the phase delays to
be equal (4). Ćuk et al. (2) stated that there is a problem with the constant Q model: that it predicts a decay of orbital
eccentricity that, to leading order, is independent of eccentricity. However, this is not true. Using the expressions in (3),
one can show that the constant Q model gives a decay of eccentricity that is, to leading order, proportional to eccentricity.
Nevertheless, given this misunderstanding of the constant Q model, Ćuk et al. proposed an ad hoc tidal model that
introduced unjustified interpolation factors into the tidal model to fix a problem that does not exist. Tidal models used
in long term simulations always represent a compromise between accuracy and computational efficiency. Another tidal
model, the constant ∆t model (5), is also commonly used for long-term studies, even though it is not supported by LLR
results (4). Ideally, one would show that key model results are insensitive to the tidal model, as was done in (6), but
this is not always a practical option. The rate of change of the eccentricity of the lunar orbit is a competition between
an increase due to tides raised on the Earth and a decrease due to tides raised on the Moon. The constant Q model
underestimates the observed rate of eccentricity increase, but there is a component of this increase that is not at present
understood (4). Though imperfect, we feel that the best choice, at present, for long-term studies is the conventional
constant Q tidal model.

2. We update the moment of inertia of the Earth (Ce), while (2) kept Ce as a constant throughout the evolution. The
treatment of Ce affects the evolution of the rotation rate ω and J2, and therefore the location of the Laplace plane
transition.
In its early history when the Earth was rotating fast, using the (7) scheme, Ce is much larger than the present value of
0.33MeR

2
e (Re = 6371km). Assuming a two-layered structure, with core density ρcore = 12.35 × 103kg ·m−3, mantle

density ρmantle = 4.18 × 103kg ·m−3, with the present Earth core radius of 3483km, equatorial radius ae of 6378km,
polar radius of 6357km, the equatorial radius and polar moment of inertia for several rotation periods, T, are, according
to Eq. 11-16 in (7):

T = 2.5h → ae = 7659km, Ce = 0.3353Mea
2
e = 0.48MeR

2
e

T = 3.0h → ae = 7024km, Ce = 0.3323Mea
2
e = 0.40MeR

2
e

T = 4.0h → ae = 6675km, Ce = 0.3318Mea
2
e = 0.36MeR

2
e

We update Ce by first updating J2 (defined as (Ce − Ae)/(MeR
2
e)) as Jp

2 (ω/ωp)2, and then evaluating Ce and Ae by
keeping Ae +Ae + Ce equal to the present value. This is an oversimplified scheme, but it gives Ce values similar to (7).

3. We use the intrinsic wobble damping rate in (8) and (9) to damp the wobble of the Moon, while the rate of damping in
(2) is 13 times smaller. Lunar laser ranging results are consistent with the (8) value (10). The damping time scale is

τ = 3GCmQm/(R5
mω

3
mk2m),

where k2m is the lunar Love number, Qm is the Moon’s tidal dissipation factor, Rm is the Moon’s radius, ωm is the
Moon’s rotation rate, and Cm is the Moon’s moment of inertia.

4. We do not include the solar tides and the cross tides. According to (6), the changes due to these tides are minor (see
Fig. 1).

Analytical Proof of the Conservation of Lz . The Hamiltonian of the Earth-Moon system without tides, when averaged over the
lunar orbit and the Earth’s orbit around the Sun, is

HEM = C1(1− e2)−
3
2 (3

4 cos2 ε− 1
4)

+ C2(3
4 cos2 Ie −

1
4)

+ C3[( 3
4 cos2 i− 1

4)(1 + 3
2e

2) + 15
8 sin2 i · e2 cos 2ω],

[S1]

where the constant factors are

C1 = −Gm0m1

a1

J2R
2
e

a2
1
, [S2]
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C2 = −Gm0m2

a2

J2R
2
e

a2
2
, [S3]

C3 = −1
2
Gmrm2

a2

a2
1
a2

2
, [S4]

and m0 = Me, m1, m2 are masses of the Earth, Moon, and Sun, mr = m0m1/(m0 +m1) is the reduced mass.
Ie is Earth’s obliquity to the ecliptic, and cos Ie = H0/G0.
l0, g0, h0, L0, G0, H0 are Andoyer coordinates and momenta for the Earth: G0 is the spin angular momentum of the Earth

(i.e., G0 = L⊕), L0 is the component of the spin angular momentum on the symmetry axis of the Earth (for principal-axis
rotation without wobble, L0 = G0), H0 is the component of the spin angular momentum perpendicular to the ecliptic (i.e.,
H0 = L⊕ cos Ie). H0 is conjugate to h0, the longitude of the ascending node of the equator on the ecliptic (6).
a1 is the semimajor axis of the lunar orbit (we will also denote it as a), e is the orbital eccentricity, and i is the inclination

to the ecliptic. cos i = H1/G1, e2 = 1− (G1/L1)2.
l1, g1, h1, L1, G1, H1 are Delaunay coordinates and momenta for the lunar orbit: L1 = √mrµa, G1 = L1

√
1− e2, where

µ = Gm0m1.The momentum L1 is conjugate to the mean anomaly l1 of the lunar orbit, G1 is conjugate to the argument of
pericenter g1 = ω of the lunar orbit, and H1 is conjugate to the longitude of the ascending node h1 = Ω of the lunar orbit on
the ecliptic. G1 = L$, H1 = L$ cos i.
ε is the mutual obliquity of the Earth’s spin axis to the normal of the lunar orbit.

cos ε = cos i cos Ie + sin i sin Ie cos(h1 − h0). [S5]

a2 is the semimajor axis of the Earth’s orbit around the Sun.
The constants C1, C2, C3 will change once tides are introduced.
Eq. S1 is derived by a method analogous to the derivation in (6). Eq. S1 reduces to the Hamiltonian in (6) up to constant

terms if e = 0. We assume a circular orbit of the Earth around the Sun in the derivation. Note that C1, C2, C3 are slightly
different from the definitions in (6).

Since in HEM there are only two combinations of angles, h1 − h0 and g1 (i.e., ω), to formally reduce the dimension of the
problem, we make a canonical transform to new coordinates g = ω and h = h1 − h0. Using the F2-type generating function

F2 = l0L+ l1L
′ + g1G+ g0G

′ + (h1 − h0)H + h0H
′ [S6]

we find
l = l0, l

′ = l1, g = g1, g
′ = g0, h = h1 − h0, h

′ = h0,
L = L0, L

′ = L1, G = G1, G
′ = G0, H = H1, H

′ = H0 +H1.
The lower-case coordinates are conjugate to the corresponding upper-case momenta. Among the new coordinates (l, l′, g, g′,

h, h′), only g and h appear in the Hamiltonian. So the averaged system has two degrees of freedom, or four dimensions in
phase space: {g, h, G, H}. L, L′, G′, and H ′ are constants of HEM , since l, l′, g′, and h′ do not appear in HEM . Note that
in HEM (Eq. S1), Ie, i, and e are functions of H and G:

cos Ie = (H ′ −H)/G′, cos i = H/G, e =
√

1− (G/L′)2 [S7]

and ε is a function of Ie, i, and h.
The averaged Hamiltonian governs the short-term evolution of the system. Tides only affect the long-term evolution and

can be ignored in short-term analysis.
Note that Lz = H ′, so the z-component of the angular momentum is conserved under HEM . Tides between the Earth

and Moon preserve Lz. Therefore, without solar tides and perturbations from other planets of the solar system, Lz of the
Earth-Moon system is a conserved quantity. We remind the reader that the derivation above is valid only when the Earth-Moon
system is not in or near any resonance that involves the Sun, since the system can be averaged to the form of Eq. S1 only
when there is no resonance involving λ2, the longitude of the Sun. When the Earth-Moon system evolves through the evection
resonance (a resonance between Ω + ω and λ2) or the evection-related limit cycle, substantial decrease in Lz can occur.

Low-e Phases of Evolution. Lunar eccentricity is excited in both the resonant processes (e.g. the evection limit cycle) and the
non-resonant LPT-instability process. Here we examine implications of Lz conservation during those phases of the evolution
when e ≈ 0.

Since both kinds of AM-draining mechanisms require an eccentric orbit to operate, Ls is nearly conserved when e ≈ 0.
Since the Lz-changing resonant mechanisms require a non-zero eccentricity, Lz is also nearly conserved. Note that this is an
approximation. Ls and Lz actually oscillate with small amplitudes, and their average values slowly decrease due to the solar
tide.

During phases of low e and high i, tides on the Earth expands a (δa > 0), and the obliquity tides on the Earth and Moon
both damp i (δi < 0, Eq. 1-6 in (2) supplementary material). Based on the near-conservation of Ls and Lz, we can analyze the
change of Ie while a increases and i decreases.

Through tides on the Earth, AM is transferred from Earth’s spin to the lunar orbit, i.e., L⊕ decreases and L$ increases by
approximately the same amount, δL (Ls = L⊕ + L$ is nearly conserved). δL > 0, since δa > 0 and L$ ∝

√
a when e ≈ 0. In
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the same interval, i decreases: δi < 0. Let δIe denote the change in Ie. To conserve Lz = L$ cos i+ L⊕ cos Ie, we must have
(L$ + δL) cos(i+ δi) + (L⊕ − δL) cos(Ie + δIe) = L$ cos i+ L⊕ cos Ie,so

L⊕ sin Ie sin δIe = (cos I − cos Ie)δL − L$ sin i sin δi.
Therefore, when e ≈ 0, while a expands (δL > 0) and i decreases (δi < 0), Ie will also vary. If Ie ≥ i, then Ie will increase

(δIe > 0). If Ie < i, the behavior of Ie depends on the rates of di/dt and da/dt. Indeed, starting from post-impact states where
i = Ie, before encountering the LPT, Ie always increases while the Earth and Moon tides increase a and decrease i (Fig. 2).

For the Lz-consistent high-obliquity simulations shown in Fig. 2, the cases that have gone through LPT-instabilities and
have not ended with unbound orbit (the {61◦, 0.7Lr}, {65◦, 0.8Lr} cases) both have their post-LPT Ie(∼ 50◦) larger than
i(∼ 35◦), so the post-LPT, low-e evolution will not bring Ie down to Ip

e .
In our simulations of post-LPT evolution, we find that Ie typically increases by ∼ 5◦ from after LPT to the present.

Therefore, the post-LPT Ie must be at most ∼ 20◦ to be compatible with the present Ip
e = 23.4◦.

Oscillation of Lz . We can use standard Lie perturbation theory to estimate the magnitude of the variations of Lz (11). The
original Hamiltonian of the system (i.e., the Hamiltonian before averaging) is

Hfull =H0 + H1,

H0 =− mrµ
2

2L2
1

+ G2
0 − L2

0
2A + L2

0
2C ,

H1 =Gm0m1

r′1

J2R
2
e

r′21
P2(ŝ · x̂′1) + Gm0m2

a2

J2R
2
e

a2
2
P2(ŝ · x̂′2)− Gmrm2

a2

r′21
a2

2
P2(x̂′1 · x̂′2)

=− C1( r
′
1
a1

)−3P2(ŝ · x̂′1)− C2 · P2(ŝ · x̂′2) + 2C3( r
′
1
a1

)2P2(x̂′1 · x̂′2),

[S8]

where r′1 and x̂′1 are the magnitude and direction of the first Jacobi vector connecting the Earth to the Moon, r′2 and x̂′2 are
the magnitude and direction of the second Jacobi vector from the center of mass of the Earth-Moon system to the Sun, and ŝ
is the direction of the spin axis of the Earth, ŝ = (sin Ie sinh0,− sin Ie cosh0, cos Ie). Since we have assumed the second orbit
to be circular, there is r′2 = a2 and x̂′2 = (cosn2t, sinn2t, 0), where n2 is the mean motion of the second orbit.

To calculate the variations in Lz = H0 + H1 we divide H1 into two parts: an averaged part H̄1 (i.e., HEM ), and an
oscillating part H̃1, which is removed when we do the averaging. So

H = H0 + H̄1 + H̃1,

in which H0 is the unperturbed Hamiltonian and is dominant in magnitude, and H̄1 and H̃1 are perturbations. We will look
at the H̄1 term, and the C1, C2, C3 terms of H̃1 separately.

Since Lz = H ′, and H̄1 does not depend on h′, Lz is conserved by H̄1. In actual evolution of the system, Lz varies because
the full Hamiltonian H depends on h′ = h0 through H̃1.

The main variation in Lz occurs because of perturbations from the Sun. So the C1 term, which is the interaction between
the Earth and Moon and does not involve the Sun, does not contribute to the variation in Lz.

For the C2 and C3 terms in H̃1, the routine of determining each term’s contribution to the oscillation of Lz is:

1. For H = H0 + H ∗, we perform a Lie transform that eliminates H ∗:

H ′ = eLW (H + H ∗),

where LWF = {F,W}, LW is the Lie derivative with respect to the generator W , and the curly brackets indicate the
Poisson bracket. The condition that determines W is that the small term is eliminated. This is

{H0,W}+ H̃ ∗ = 0.

Since both the C2 and C3 terms of H̃1 explicitly contain t (through x̂′2), we work in the extended phase space in which t
is a coordinate, and add T , the momentum conjugate to time, to H0.

2. The variables also transform. We are interested in the variations of Lz. The transformed Lz is eLW Lz.

L′z = eLW Lz = Lz + {Lz,W}+ ....

So the variations in Lz are simply computed as {Lz,W}.

The C2 term in H̃1 is

−C2(3/4) sin2 Ie cos 2(n2t− h0).

The equation determining W then simplifies to (for the C2 term)

4 of 11 ZhenLiang Tian and Jack Wisdom



∂W

∂t
= −C2(3/4) sin2 Ie cos 2(n2t− h0).

This can be integrated to

W = −C2(3/4) sin2 Ie sin 2(n2t− h0)/(2n2).

The consequent variation in Lz = H0 +H1 is then

{H ′,W} = −C2(3/4) sin2 Ie cos 2(n2t− h0)/n2.

So the magnitude of the variation of Lz due to the C2 term is just −C2(3/4) sin2 Ie/n2 (note that C2 is negative), and the
peak to peak amplitude is twice this

− C2(3/2) sin2 Ie/n2. [S9]

The C3 term in H̃1 is more complicated. Averaged over the lunar orbit, it is

2C3[(1 + 3/2e2)(3/8) sin2 i cos 2(n2t− h1)
+ (15/32)e2(1− cos i)2 cos(2(n2t− h1) + 2ω)
+ (15/32)e2(1 + cos i)2 cos(2(n2t− h1)− 2ω)]

The corresponding W is

W = C3[(1 + 3/2e2)(3/8) sin2 i sin 2(n2t− h1)
+ (15/32)e2(1− cos i)2 sin(2(n2t− h1) + 2ω)
+ (15/32)e2(1 + cos i)2 sin(2(n2t− h1)− 2ω)]/n2

The variation is Lz is

{H0 +H1,W} = 2C3[(1 + 3/2e2)(3/8) sin2 i cos 2(n2t− h1)
+ (15/32)e2(1− cos i)2 cos(2(n2t− h1) + 2ω)
+ (15/32)e2(1 + cos i)2 cos(2(n2t− h1)− 2ω)]/n2.

The three terms have different frequencies, so we can get the peak magnitude by adding the magnitudes of each term

−2C3[(1 + 3/2e2)(3/8) sin2 i+ (15/16)e2(1 + cos2 i)]/n2.

Collecting terms, −C3(3/4)[(1− e2) sin2 i+ 5e2]/n2, and the peak to peak amplitude is twice this

− C3(3/2)[(1− e2) sin2 i+ 5e2]/n2. [S10]

The total peak to peak variation of Lz is the sum

(3/2){−C2 sin2 Ie − C3[(1− e2) sin2 i+ 5e2]}/n2

=[4.4673× 10−6( a1

Re
)2(sin2 i− e2 sin2 i+ 5e2) + 7.837× 10−7( ω

ωp
)2 sin2 Ie]Lr.

[S11]

This prediction agrees well with the observed amplitude in the numerical simulations, as shown in Fig. S2.
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Fig. S1. Details of the Laplace transition, with the same choices of Lz -inconsistent initial conditions and parameters as for Fig. 1 in (2): Ie = 70◦, Ls = 0.63Lr ,
Qe/k2e = 100, Qm/k2m = 100. Black lines show a branching at 20 My with Qe/k2e = 200. In the AM panel, the top thin line is Ls (scalar sum, L⊕ + L$), the thick
band is L⊕ + L$ cos i, and the horizontal thin line is Lz . This figure is to be compared to Fig. 1 in (2).
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Fig. S2. (A) Lz − 0.2162Lr vs time, in 10−3Lr , for the same simulation in Fig. S1. (B) the predicted amplitude of Lz oscillation as suggested by Eq. S11. The blue lines in
(A) are the envelopes of Lz data. The blue line in (B) shows the distance between the two envolopes in (A). The theoretical prediction agrees well with the measured amplitude
as shown by the blue line.
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Fig. S3. Ls, i, and Ie results at a = 25Re, with the same choices of Lz -inconsistent initial conditions and parameters as for Fig. 2 in (2). Initial Ie = 70◦. Open
square: Ls = 0.63Lr , Qe/k2e = 100, Qm/k2m = 100; black square is branching to Qe/k2e = 200 at 20 My. Circle: Ls = 0.63Lr , Qe/k2e = 200,
Qm/k2m = 200, 100, 50 (white, grey, black). Open triangle: Ls = 0.71Lr , Qe/k2e = 100, Qm/k2m = 100; black triangle is branching to Qe/k2e = 200 at 28 My
(left) and 30 My (right). Vertical blue line is Ls = Lp

s . All the cases end with Ls smaller than Lp
s . This figure is to be compared to Fig. 2 in (2).
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Fig. S4. Details of the Laplace transition, with the same choices of Lz -inconsistent initial conditions and parameters as for Fig. 3 in (2): Ie = 80◦(black), 75◦(red), 65◦(blue),
Ls = 0.63Lr , Qe/k2e = 100, Qm/k2m = 100. This figure is to be compared to Fig. 3 in (2).
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Table S1. Vertical AM (Lz) used in (2) and our comparison simulations.

Lz [Lr ] Lz/Lp
z Ls [Lr ] Ie comment

0.215 63% 0.63 70◦ Figs. S1, S3; Figs. 1, 2 in (2)
0.243 72% 0.71 70◦ Fig. S3; Fig. 2 in (2)
0.109 32% 0.63 80◦ Fig. S4; Fig. 3 in (2)
0.163 48% 0.63 75◦ Fig. S4; Fig. 3 in (2)
0.266 78% 0.63 65◦ Fig. S4; Fig. 3 in (2)

Lp
z is the present-day value of Lz (0.339Lr).
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