
S1 Block structure does not depend on a specific evolu-
tionary model

The block structure that SBMClone relies upon does not require a particular evolutionary
model, it simply reflects the presence of groups of cells that share groups of mutations. For
example, see clone tree T in Fig. S1. Each vertex in T corresponds to a clone in the block
matrix X, and each edge in T corresponds to a mutation cluster in X. While this clone tree
has a deletion of mutation cluster B1 and homoplasy of B4 (i.e., the mutations in B4 were
gained twice by two distinct clones), both of which violate the infinite sites assumption (i.e.,
perfect phylogeny model), the block matrix X still conforms to our model in that rows and
columns can be organized into blocks of 1-entries (gray) and blocks of 0-entries (white).
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Figure S1: Block structure does not depend on a specific evolutionary model.
(Left) A clone tree T containing a deletion of the mutations in cluster B1 (red) and ho-
moplasy (independent occurrence of same mutations in different cells) of the mutations in
cluster B4 (bold), both of which violate the infinite sites assumption. (Right) The block
matrix X where each vertex in T corresponds to a row block in X and each edge in T cor-
responds to a column block in X. 1-entries are indicated in gray and 0-entries are indicated
in white. The deletion of mutations in B1 in clone A3 is indicated by a red box, and the
homoplasy of mutations in B4 is indicated by black boxes.
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S2 Relationship between p and sequencing coverage
While the per-cell coverage statistic (normally computed as the total number of bases se-
quenced from a cell divided by the length of the normal human genome) is in principle
proportional to the block probability p, there are a few key issues that complicate this rela-
tionship:

1. Coverage is computed across all loci in the genome, but the number n of mutations be-
ing considered may be a subset of loci. For example, standard variant calling pipelines
would reduce n to a subset of loci with higher coverage.

2. Coverage counts total reads, while the block probability p is more closely related to
variant reads. In the context of diploid cells and heterozygous SNVs, this would imply
that p would be smaller than the coverage by about a factor of two – in the presence of
more widespread aneuploidy such as whole-genome duplication, however, this may be
a factor of four or more. Furthermore, copy number aberrations in cancer genomes are
normally non-uniform, meaning that the average number of reads required to observe
a mutation (and thus the proportionality between the coverage and p) varies across
the genome.

Ultimately the density of the mutation matrix D depends strongly on the preprocessing steps
used to construct it: quality thresholds for read alignment, variant calling, and any other
filtering steps will all have an effect.

S3 Parameters for SBMClone , BnpC [1], and SCG [2]
The results shown in the main text marked as SBMClone apply the SBM inference algorithm
implemented in [8] specifying a minimum of 4 blocks to infer. Those marked as H were run
in the same way with the "nested" flag set to True, which corresponds to applying the
hierarchical SBM likelihood function. SBMClone took no more than 30 minutes to complete
on any instance.

BnpC [1] was run with default parameters except for the running time limit which was set
to 4 hours (originally there is no limit on running time, which resulted in a running time of
22-48 hours for mutation matrices with 4000 rows and 5000 columns). For several mutation
matrices with empirical densities (Fig S4A) and the real data (Fig 4B), BnpC exceeded its
allocated memory of 64 GB or crashed with a floating point underflow error.

SCG was run using the doublet model and the same parameters as those used for the
example data. Runtime was normally under 30 minutes, but occasionally exceeded 20 hours
or consistently crashed on a dataset.

S4 Basic two-population simulations
Given block probability matrix P , block matrix X, clone assignments v, and mutation group
assignments e, we observe each entry xi,j independently at random with probability pvi,ej .
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Figure S2: Applying SBMClone to basic two-population simulated data with varying block
sizes.

For the basic simulated data, X had 2 clones and 3 mutation groups (see description and
Fig. 2 in the main text).

The number m of cells was varied from 100 to 4000, and the number n of mutation
was varied from 100 to 10000. The fraction fcell of cells in clone 1 (i.e., A1/m) and the
fraction fmutation of subclonal mutation in mutation group 2 (i.e., |B2|/(|B2| + |B3|)) were
varied independently from 0.01 to 0.6. The fraction fsubclonal of mutations that were not
shared between clones (i.e., (|B2| + |B3|)/n) was varied from 0.3 to 1.0. Across all 128 888
combinations of parameters with 10 trials each, SBMClone-H yielded a median ARI of 0.49,
while k-means yielded a median ARI of 0.04. For the figure shown in the main text (Fig. 2B),
fcell = fmutation = 0.4 and fsubclonal = 0.3. For m = 4000 and n = 5000, SBMClone is able to
consistently recover the two clones with p as low as 0.01, and often as low as 0.005 (Fig. SS2).

S5 Additional considerations for basic simulations

S5.1 Normal cells

To investigate the performance of SBMClone with varying tumor purity (i.e., the proportion
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Figure S3: SBMClone accurately recovers tumor cells on simulated block matrices
with varying tumor purity. (A) The block matrix X used to generate simulated data.
Clone A∅ corresponds to normal cells with no mutations, and clones A1 and A2 are tumor
clones that share mutation cluster B1 and each have an exclusive mutation cluster. (B)
Parameters used to generate simulated data and their associated values. (C) ARI computed
on cells in A1 and A2 (“Tumor ARI,” y-axis) measures the performance of SBMClone in re-
covering the two tumor clones A1 and A2 from simulated data with varying block probability
p (x-axis). Each line corresponds to a different fraction fnormal of normal cells.
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of tumor cells in a sample), we applied SBMClone to simulated block mutation matrices X in
which we included a population A∅ of cells that contain no mutations (Fig. S3). The fraction
fnormal A∅/m of normal cells was varied from 0 to 0.99, the fractions fcell and fSNV were
varied from 0.05 to 0.4, and the block probability p was varied from 10−3 to 10−1 (Fig. S3B-
C). We evaluated the performance of SBMClone using tumor ARI, i.e., ARI computed only
for cells in A1 and A2. We ran SBMClone using the hierarchical model (i.e., SBMClone-H)
and set the minimum total number k+ ` of blocks to 4. We found that SBMClone was able
to recover (tumor ARI > 0.95) clones representing as few as 5% of the tumor cells with as
much as 75% normal cells and with a block probability p ≥ 0.02 (Fig. S3C)

S5.2 Whole-genome duplication

Whole genome duplications (WGD) also affect inference of clones using SNVs. Since WGDs
duplicate the number of copies of every genomic region, somatic mutations that occur after
WGDs are generally present in fewer copies of a genomic region. For example, a mutation
that occurs in a genomic region not affected by further CNAs would be present in only one
copy of the four total copies of that region, while, in the absence of WGD, a mutation is
generally present in one copy of the 2 total copies. Therefore, the density of these mutations
in the matrix would be lower. For example, if a block probability p = 0.01 corresponds to a
simulated dataset with a sequencing coverage of 0.2× in the absence of WGD, then p = 0.02
would generally result in a dataset with the same coverage but with the presence of a WGD.

S6 Generating ternary simulated data for SCITE and
BnpC

SCITE and BnpC take as input a ternary matrix D ∈ {0, 1, ?} in which a 1-entry represents
a cell containing a mutation, a 0-entry indicates that a cell does not contain a mutation,
and ? indicates missing entries. In order to adapt our simulation to this ternary matrix
setting, we modify it as follows. Intuitively, our normal simulation framework corresponds
to obtaining p ∗ n variant reads from each cell. Assuming that SNVs are in one copy of
a diploid genome in every cell, one would also obtain p ∗ n reference reads from each cell.
Thus, rather than simply sampling the 1-entries of D̂, we also observed the 0-entries in D̂
uniformly at random with probability p. Note that obtaining p · n reference reads from each
cell is generous, because a) each cell might have more than 2 reference copies of the mutated
locus and b) we assume that we do not obtain any false negatives, i.e., reference reads from
cells with a mutation at that locus.

S7 Applying SCITE to example simulated data
We applied SCITE to 3 example simulated mutation matrices: a basic simulation with
fclonal = 0.3, balanced populations and p = 0.1 ("easy" case); a basic simulation with
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Figure S4: ARI (y-axis) measures the performance of the 5 methods on data simulated with
empirical block probabilities (Figure 3C) when merging mutations across varying numbers
of cells (x-axis).

balanced populations and p = 0.01 ("hard") case, and a tree-structured simulation with
p = 0.1 ("tree" case). SCITE produced uninterpretable results on the easy case, returning
a tree with 5000 vertices and attaching each cell to an average of 5.27 vertices. SCITE was
unable to complete successfully on the hard or tree cases, each crashing multiple times after
running for several days per attempt.

S8 Empirical probability matrix P̂

S8.1 Constructing the empirical probability matrix P̂

Using previous analysis [10] of a 10X Chromium single-cell dataset, we constructed an em-
pirical probability matrix and used it to generate realistic simulated datasets (Fig. 3C) . The
previous analysis of this dataset by Zaccaria and Raphael [10] inferred a phylogenetic tree
from copy-number aberrations (CNAs) which divided 4 085 tumor cells into 8 clones. The
authors identified 10 556 somatic mutations to corroborate this tree which were divided into
15 mutation clusters corresponding to the edges of the tree (Fig. 4A). Given the 4 085 ×
10 556 mutation matrix D̃ = [d̃i,j] corresponding to the analyzed cells and mutations, as well
as the assignments of cells to the 8 clones and mutation to the 15 mutation clusters from
this previous analysis, we computed each entry p̂r,s of the empirical probability matrix P̂ as
follows:

p̂r,s :=

∑
i∈Ar

∑
j∈Bs

d̃i,j

|Ar||Bs|
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S8.2 Evidence of errors in P̂

We computed the empirical probability matrix P̂ (Fig. 3C) from a 10X Chromium single-cell
dataset to generate realistic simulated datasets. In particular, we analyzed the 10 556 somatic
mutations that were identified in a previous study of this dataset by Zaccaria & Raphael [10]
and that were assigned to 8 distinct tumor clones (Fig. 4A). To identify mutations present
in small subpopulations of cells (< 50), the study also included mutations with low numbers
of variant reads. Since errors are also generally characterized by a low number of variant
reads, distinguishing such mutations from errors is very challenging. Therefore, many of
these 10 556 previously identified mutations are likely to be false positives, as evidenced by
the presence of mutation clusters with block probabilities lower than expected (Fig. 3C).
For example, while one would expect that the blocks corresponding to the mutation cluster
shared across all clones (Fig. 3C, first column) should have the high block probabilities, the
block probabilities of these blocks are low (< 0.0023). This occurs because each mutation
was assigned to the “latest” edge of the tree such that all of the cells with the mutation are
within clones that descend from that edge. Therefore, false positive mutation calls may be in
arbitrary cells that belong to clones in distinct phylogenetic branches, hence corresponding
mutations are assigned to “early” edges of the tree even if they have a low number of variant
reads. For example, a mutation that is shared between clones J-I and J-II but is falsely
detected in clone J-VII would be placed in this mutation cluster even though it is not present
in any clones on the right half of the tree.

S9 Merging cells to increase coverage in silico
On simulated data, we can evaluate the sensitivity of SBMClone by modifying the block
probability p. On real data we cannot multiply the coverage, but we can merge information
across similar cells to synthesize a higher-coverage dataset with fewer cells. Specifically,
we randomly cluster cells within each population/clone into clusters of size c. Then, for
each cluster, we merge the cells into a single row representing a higher-coverage pseudo-
cell: this row harbors the union of the individual cells’ mutations/1-entries. This approach
offers similar performance on empirical densities to directly modifying the coverage (compare
Figure 3D to Figure S4).

S10 Assessing SBMClone model selection
To assess how well SBMClone inferred the number k of clones (i.e., model selection), we
computed the difference k̂− k between the number k̂ of inferred clones and the number k of
true clones across the simulated and real data matrices included in the paper. We observed
that SBMClone converges to the correct number of clones as the block probability p or
merged cell size (x-axis) increases, and generally infers the correct number of clones when
the ARI is > 0.5 (Fig. S5).
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Figure S5: SBMClone accurately infers the number of distinct clones. Each plot
matches a plot in the main text or supplement, showing the ARI (left y-axis, blue line)
and the difference k̂ − k between the number k̂ of inferred clones and the number k of
true clones (right y-axis, dotted brown line) of SBMClone-H when applied to (A) basic
2-population simulated data (matching Fig. 2B), (B) tree-structured simulated data with
uniform block probability p (matching Fig. 3B), (C) tree-structured simulated data with
empirical block probabilities P = [pr,s] scaled by a multiple (matching Fig. 3D), (D) tree-
structured simulated data with empirical block probabilities and cell merging (matching
Fig. S4), and (E) 10X breast cancer data with cell merging (matching Fig. 4B). Each point
shows the mean and standard error across 5 random instances (where the randomness in real
data is in the cell merging process).
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Figure S6: Read-depth profiles support SBMClone’s classification of tumor and
normal cells in both pre- and post-treatment DOP-PCR sequencing data of
breast cancer patient [3]. Read-depth profiles are computed by pooling all the sequencing
reads from all pre- (left) or post-treatment (right) cells that are classified as either normal
(top) or tumor (bottom) cells by SBMClone.

S11 DOP-PCR data analysis
After de-duplicating reads using SAMtools[7], we used Bowtie2 [6] to align DNA sequencing
reads using the same procedure and reference genome hg19 as described in the published
analysis [3]. We called mutations using BCFtools [7] and removed germline variants using
dbDNP release 150 [9]. Then, since we did not have a matched normal sample, we formed a
pseudo matched-normal sample by pooling together the sequencing reads from diploid cells
as in previous studies [11, 10, 5], and removed mutations that were present in more than 2
cells in the matched normal sample as putative germline variants. Finally, we restricted our
analysis to the 51 511 mutations with at least 10 total reads and a variant allele frequency
(VAF) below 0.8 to avoid sequencing errors and germline homozygous variants, respectively.

To validate SBMClone’s classification of tumor and normal cells in the DOP-PCR data
[3], we computed the read-depth ratio (RDR) of four different groups of cells – normal and
tumor cells identified in the pre-treatment and post-treatment samples – as follows. For each
group of cells, we pooled the reads across all cells in the same group, partitioned the reference
genome into 5 Mb genomic bins, and computed the RDR of each bin as the ratio between
the total number of reads in the bin and the number of reads in the same bin from a pseudo
matched-normal sample described above. While the normal cells had constant read depth
across the genome in both pre- and post-treatment samples, the tumor cells in both pre- and
post-treatment samples exhibited highly variable read-depth profiles across large portions
of the genome. These read-depth profiles are consistent with the large CNAs identified in
tumor cells in the published analysis of this dataset [3] (Fig. S6). This supports the novel
finding of tumor cells in the post-treatment sample.
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Figure S7: Secondary analysis by SBMClone corroborates the previously unchar-
acterized presence of both pre- and post-treatment tumor cells in contrast to the
published analysis of 90 breast tumor cells. (Left) Published copy-number analysis
of 90 cells from a breast cancer patient P2 [3] identified 16 tumor cells (green) exclusively
among cells that were obtained pre-treatment, and no tumor cells were those that were ac-
quired post-treatment. (Right) SBMClone analyzed 59 876 mutations from the 90 cells and
identified tumor cells (green) both across pre-treatment (25 tumor cells) and post-treatment
(9 tumor cells) cells. SBMClone’s results are well supported by the identification of 181
SNVs that separate tumor from normal cells: the 181 SNVs have a high block probability
in the tumor cells (0.784) but a very low block probability in the remaining normal cells
(0.122).
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We also analyzed these data with less attention to germline variants: we identified muta-
tions using Varscan2 [4], then restricted our analysis to the set of 59 876 mutations that had
at least 5 variant reads, at least 50 total reads, and a VAF below 0.8. While this 90× 59 876
mutation matrix was very dense (over 37% of the entries in the matrix were 1, as opposed
to < 10% for most simulated data, < 1% for the 10X data, and about 6% for the other set
of mutations from the same sequencing data), indicating that many germline variants may
have been retained, we obtained a very similar bipartition of tumor and normal cells to the
result in the main text (Fig. S7).
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