Supplementary Material — Sampling and Summarizing
Transmission Trees with Multi-strain Infections

Palash Sashittal® Mohammed El-Kebir?*

'Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
?Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Contents
A Background and Theory 2
A.1 Transmission Tree Metric . . . . . . . . . . . . . . i 2
A2 Sampling Scenarios . . . . . . . ..o e e e e e 3
B Complexity 3
B.1 Decision Problem . . . . . . . . . . .. 3
B.2 Counting Problem . . . . . . . . . . ... 7
C Naive Rejection Sampling Algorithm 8
D Consensus Transmission Tree Algorithm Proof 10
E Additional Simulation Results 11
F Additional HIV Data Analysis and Implementation Details 12

*To whom correspondence should be addressed.



() (b) (©

Figure S1: The timed phylogeny shown in Main Text Fig. 1a has 3 possible vertex labeling solutions.

A Background and Theory

In this section we provide the information we could not include in the main text. Fig. S1 shows all the
feasible solutions to the representative DTI problem described in the Main Text Fig. 1.

A.1 Transmission Tree Metric

In this section we show that WPCD is a distance metric. To show that WPCD is a distance metric, for any
transmission tree .5;, we define the function ¢; : ¥ x ¥ — N as

R e

0, otherwise.

Observe that, by construction, ¢; uniquely determines the transmission tree .S; since for any edge (s, t) €
E(S;) we have w;(s,t) > 0. Further, the WPCD between any two transmission trees S and Sy can be
alternatively written in terms of ¢; and go as follows,

d(S1,8) = D lai(s,t) —ga(s,t)]-

(s,t)eEXxX
Proposition 1. WPCD is a distance metric on the space of transmission trees 7 .

Proof. First, we show that for any two transmission trees Sy and S, d(S1,.S2) = 0 if and only if S; = Ss.
Clearly when S; = S2, we have d(S7,S2) = 0. Now, let us consider the case d(S1,S2) = 0. For any
(s,t) € ¥ x X, |qi(s,t) — qa(s,t)| > 0. Therefore, if d(S1,S2) then for all (s,t) € ¥ x ¥ we have
q1(s,t) = ga(s, t) implying that S; = Ss.

By definition, WPCD is always nonnegative and symmetric. We only need to show the triangle inequal-
ity, i.e. given trees S1, S3 and S5, we must show

d(S1,S3) < d(S1,S2) + d(S2,S3).
‘We show this as follows.

d(S1,83) = > lai(s,t) — gs(s,t)]

(s,t)eXXX



= Z lq1(s,t) — qa(s,t) + q2(s,t) — q3(s,t)]

(s,t)ETXT

< > (lar(s,t) = ax(s,0)] + laz(s,1) — as(s,1)])

(s,t)eXXX
— d(S1, S2) + d(S, S3).

A.2 Sampling Scenarios

The weak transmission bottleneck has some interesting implications for the sampling of the within-host
diversity of the infected hosts. Fig. S2 gives an overview, with schematic representations, of 4 different
scenarios that can occur for real outbreaks.

B Complexity

This section shows the hardness of the decision and the counting versions of the DTI problem by reduction
from the one-in-three SAT (1-in-3 SAT).

Problem 1 (1-in-3SAT). Given a Boolean formula ¢ = /\fﬂ (yi,1 Vi 2 Vyi3) in 3-conjunctive normal form
(3-CNF) with n variables and k clauses, decide whether there exists a truth assignment 6 : [n] — {0,1} so
that each clause has exactly one true literal (and thus exactly two false literals).

B.1 Decision Problem

To relate literals to variables, we use the function v : [k] x {1,2,3} — [n] such that (¢, j) is the variable
corresponding to literal y; ;. We define o (4, j) to be 1 if y; ; is a positive literal (i.e. y; ; = Ty(i,5)), otherwise
o(i,7) = 0if y; ; is a negative literal (i.e. y; ; = =T, (i 5))- A truth assignment 6 satisfies ¢ if for each clause
i € [k] there exists a j € {1,2,3} such that o(¢,5) = 0(v(i,7)).

Given ¢, we construct a timed phylogeny T'(¢) with leaf labeling /, a contact map C(¢) and time-stamps
T, Te, Tr, as depicted in Fig. S3 and detailed below. We set ¥ = { L, z1,...,Tp, 7Z1,..., " Zp C1,y ..., CL}.
Let € > 0 be a small positive constant. As for entry and removal time-stamps, we set 7.(L) = 0, 7.(L) = ¢,
and 7 (z;) = 7.(—x;) = € and 7. (x;) = 7 (—x;) = 3¢ for each variable i € [n]. For each clause ¢;, i € [k]
we set 7.(c;) = 7.(¢;) = 3e. Timed phylogeny T'(¢) is composed of 3k clause gadgets and n variable
gadgets, each corresponding to a subtree that is directly attached to the root r(7'(¢)). The root vertex has
time-stamp 7(r(T'(¢)) = 0. The leaves of T have identical time-stamps 3¢. For each variable i € [n],
we have a subtree T'[x;] whose root has time-stamp 7(r(7[x;])) = 2e. The two children of r(7'[x;]) have
identical time-stamps 3¢, with one child leading to two leaves labeled by positive literal x; and the other
child leading to two leaves labeled by negative literals —z;. Similarly, for each clause ¢;, i € [k], we have
3 subtrees T'[y; 1], T'[y;,2]) and T'[y; 3]. The root of the subtree T'[y; ;] has time-stamp € and two children,
one of which is the leaf labeled by z,(; jy if yij; = —x,(; ;) and =z, ;) if yi; = x,(; 5. The other child
node, denoted as v; j, has time-stamp 7(v;, j) = 2¢ and has only one child which is a leaf labeled by ¢;. The
contact map C(¢) is constructed as follows. The vertex set for the contact map is given by ¥. We have a
directed edge from _L to each of the variables {z1, -+ , zy, @1, -+ ,-x,}. Fori € [n], each variable x; has
an outgoing edge to —z; and similarly variable —z; has an outgoing edge to z;. Finally, each clause c¢; has
three incoming edges, one from each of the literals that form the clause, i.e. y; 1, ¥; 2 and y; 3. For instance,
if ¢ == (z1 V 22 V —x3), then we have the directed edges (z1,¢1), (x2, ¢1) and —z3, C;. Clearly, T'(¢) and
C'(¢) can be obtained in polynomial time from ¢. An example of this reduction is shown in Fig. S5.
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Figure S2: Schematic representation of different sampling scenarios during an outbreak. Different
hosts H, and H> are represented by rectangular boxes and the samples taken from the hosts are indicated by
blue or green circles inside the boxes respectively. Red lines represent the evolution of pathogen lineages.
Different scenarios described are (a) Unsampled Host scenario where host H; is not sampled even though
it is part of the outbreak and infects Hy with multiple strains (b) Unsampled Lineage where even though
host H is sampled with sample Sy 1, the lineage that passes two strains into host H5 remains unsampled
(c) Unsampled Strain scenario where the host H; is sampled and the right lineage is also sampled however
the two strains that are transmitted to host Hs are not sampled (d) Complete Sampling scenario where there
is no incomplete lineage sorting (ILS) and all the strains transmitted from H; to Hs are sampled.
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Figure S3: Construction of 7'(¢) for reduction from 1-in-3SAT to DTI. Let ¢ be an 1-in-3SAT formula
with k clauses and n variables. T'(¢) is built with a root node r(7'(¢)) can is connected to 3k clause subtrees
Ty, T2, Tlyisls - Tlwkal, Tyk2], Tyk,3]} and n variable subtrees {T'[x1], - - -, T'[x,,] }. We set
Te(L) = 0,7-(L) = &, and 7e(x;) = Te(—x;) = € and 7.(x;) = 7(—2;) = 3¢ for each variable i € [n].
For each clause ¢;, i € [k] we set 7c(c;) = 7,-(c;) = 3c. We prove that there exits a truth assignment so that
each clause of ¢ has exactly one true literal if and only if there exists a vertex labeling for 7'(¢) that results
in a transmission tree that is a spanning arborescence of the contact map C'(¢) (Fig. S4).

Figure S4: Construction of C(¢) for reduction from 1-in-3SAT to DTIL. Let ¢ be an 1-in-3SAT formula
with k clauses and n variables. The host setis ¥ = { L, z1,- - ,zp, @1, -+, Xy, C1, -,k }. We have a
directed edge from L to each of the variables {1, - ,zy,, 21, -+, 2, }. Each each i € [n], variable z;
has an outgoing edge to —x; and similarly variable —x; has an outgoing edge to x;. Finally, each clause c;
has three incoming edges, one from each of the literals that form the clause, i.e. y; 1, ;2 and y; 3.
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Figure S5: Example of reduction. Consider the 1-in-3SAT Boolean formula ¢ = (21 V 23 V —x3). ¢ is
satisfiable with truth assignment 6(1) = 0,60(2) = 0 and #(3) = 0. Figures (on the left) shows a vertex
labeling ¢ corresponding to 6. Since the vertex labeling admits a transmission tree (one the right), ¢ is
Exactly-1 satisfied with truth assignment 6.

T = 34
time ¥ 7 L1




Lemma 1. For any vertex labeling ¢ of T'(¢), L is the root host.

Proof. Under the direct transmission constraint, root host is given by the host that labels the root node of
the timed phylogeny. The time stamp of the root node of T'(¢) is 7(r(7(¢))) = 0. The only host that has
entry time before 7. < 0 is _L. Therefore, for any vertex labeling we have £(r(T'(¢))) = L, which makes L
the root host. U

Lemma 2. For any variable x, either {(L, z), (z, ~x)} C E(S) or {(L, —x), (—z,z)} C E(S).

Proof. For any variable z, consider the subtree T'[x]. By construction we have, 7(r(T'[x])) = 2¢ and the
node only has two children labeled by x and —x. From the contact map we know that the only possible
infectors for x has | and —x and similarly for -z are L and z. Given that 7,.(L) < 7(r(T[x])), the only
remaining choices for ¢(r(7'[x])) are = and —z.

If {(r(T[x])) = x then we have {(_L, x), (z,~z)} C E(S) andif {(r(T[z])) = —z wehave {(L, ~z), (—z,z)} C
E(S). O

Lemma 3. For any clause ¢; = (y;1 V yi2 V ¥i3), if (vij,¢i) € E(S) then £(r(T[y;;])) = vi; and
Ur(Tys ) = Lforj" #j.

Proof. Consider the subtree T'[y; ;]. Let us denote the node that is child of r(7[y; ;]) and parent of the leaf
of T'[y; ;] labeled with ¢; as v;.

Since S is a spanning arborescence of C'(¢) we have either (y;1,¢;), (yi2,¢i) or (yi3,c;) in E(S).
Without loss of generality, let us assume that (y; 1, ¢;) € E(S).

The edges (vi,07(v1)), (ve,d7(v2)) and (vs,d7(v3)) need to be transmission edges since 7(vy) =
T(v2) = 7T(v3) < Te(ci). Since (yin,ci) € E(S), we require £(vy) = £(v2) = ¢(v3) = y;1. Looking at
r(T'ly;,2)) and 7(T[y; 3]), since each clause consists of distinct variables, we can only have £(r(T'[y; 2])) =
U(r(T[yiz3])) = L. Consequently, the transmission edges (r(7'[y;2]), v2) and (r(T[y; 3]), v3) results in a
edge (L,y;,1) in E(S). By Lemma 2, this also means (y; 1, —~y;,1) € E(S) and therefore £(r(T[y;1])) =
Yi1- O]

Lemma 4. For any literal y; ; in clause ¢;, (L, y; ;) € E(S) if and only if (y; j,¢;) € E(S).

Proof. Consider the subtree T'[y; ;|. Let us denote the node that is child of r(7'[y; ;]) and parent of the leaf
of T'[y; ;] labeled with ¢; as v.

(=)If(L,y;;) € E(S), then by Lemma 2 we know that (y; ;, ~y; ;) € E(S). Therefore, £(r(T[y; ;])) =
vi,j. Given that £(r(T'[y; ;])) = vi,5, £(07(v)) = ¢; and 7(v) = €, the only feasible label for v is y; j. There-
fore ¢(v) = y; j and (y; j, ;) € E(s).

(=) If (yi5,¢i) € E(S), then since 7(v) < 7¢(c;), we have £(v) = y; ;. From Lemma 3 we know that
0(r(Tys4])) is either L or y; ;. If £(r(T[y; ;])) = L, then we will have {(_L,y; ;), (L, —y;;)} which is not
possible due to Lemma 2. Therefore ¢(r(1'[y; ;])) = vi,; and consequently (L, y; ;) € E(S5). O

Proposition 2. There exists a vertex labeling ¢ of 7'(¢) under the direct transmission constraint such that
the corresponding transmission tree S(¢) is a spanning arborescence of C(¢) if and only if ¢ is satisfiable
with a truth assignment 6 so that each clause has exactly one true literal.

Proof. (=) Let ¢ be a vertex labeling of T'(¢) under the direct transmission constraint such that the cor-
responding transmission tree .S is a spanning arborescence of C'(¢). We construct the corresponding truth
assignment 0 for ¢ as follows. From Lemma 2 we know that for any variable z, either (L,z) € E(S) or
(L,—~x) € E(S). Weset0(i) = 1if (L,z;) € E(S) and §(i) = 0if (L, ~z;) € E(S). We claim that the
this truth assignment satisfies ¢ with exactly one literal for each clause.



We need to show that, for any clause ¢; = (y;,1 V ¥i2 V ¥i3), exactly one of (L,y;1),(L,yi2) and
(L, vs,3) is in E(S). From Lemma 4 we know that (_L,y; ;) € E(S) if and only if (y; j, ¢;) € E(S). Since
S is a spanning arborescence, exactly one of (y(i,1),¢;), (vi2,c¢i) and (y;3,¢;) is in E(S). Therefore,
exactly one of (L, y;1), (L, vi2) and (L, y; 3) is in E£(S) which renders the clause ¢; satisfied with exactly
one literal.

(«=) Consider the truth assignment 6 that satisfies ¢ with exactly one literal for each clause in ¢. We
build the vertex labeling ¢ for T'(¢) as follows. From Lemma 1 it is clear that L is the root host and therefore
r(S) = L. We set {(T'[x;]) = z; if (i) = 1 and ¢(T[x;]) = —x; if 6(¢) = 0. For any clause ¢; in ¢, if y; ; is
true we set £(r(T'[y; ;])) = vi,; and if —y; j is true we set £(r(T[y; ;])) = L. Finally, we set £(v; j) = y; ; for
all j € {1,2,3}. We need to show that constructed vertex labeling satisfies the direct transmission constraint
and that the resulting transmission tree is a spanning arborescence of the contact map C(¢). We do this by
first showing that (i) each variable has a unique infector and (ii) all transmission edges between the same
pair of hosts have time intervals that overlap.

Consider all the variables that are assigned true by the truth assignment. The infector for all these
variables is L since 4(r(T(¢))) = L and £(T'[x;]) = z; if @ = 1 and £(r(T[y;;])) = L if -y ; is true.
This agrees with C'(¢). The time intervals of the outgoing edges from r(7'(¢)) and r(T'[y; ;]), Vi € [k],j €
{1,2,3} contain 7 = ¢. Therefore, all possible transmission edges from L overlap at 7 = ¢.

Consider the variables that are assigned false by the truth assignment. From Lemma 2 we know that
for any such variable x, they are infected by —x. This agrees with C'(¢). Moreover, these variables do not
label any of the interval vertices of the tree 1" and all the leaves of T are at the same time-stamp 7 = 3e.
Therefore, all possible transmission edges to any such variable x overlap at 7 = 3e¢.

Finally, consider any clause ¢;. All the internal vertices v; j,j € {1,2,3} are labeled by the same
variable y; ; that renders the clause ¢; satisfied. As a result, y; ; is a unique infector of ¢; and (y; ;, c) exists
in E(C(¢)) by construction. Also, time-stamp of all vertices v; ; are the same 7 = 2¢ and therefore, the
transmission edges overlap at 7 = 2e. O

B.2 Counting Problem
This section proves the #P-completeness of the #DTI problem.
Proposition 3. There exists a parsimonious reduction from #1-in-3SAT to #DTI.

Proof. Consider the reduction shown in Section B. Here we show that this reduction is parsimonious, i.e. it
preserves the number of solutions in the solution spaces of the two problems. We show a bijection between
the solution space of a 1-in-3SAT and the solution space of the corresponding DTT instance.

Consider the Boolean formula ¢. For a given truth assignment 6 that satisfies each clause of ¢ with
exactly one true literal, we construct the vertex labeling of 7'(¢) as following. We let (T [x;]) = z; if
0(i) = 1 and ¢(T'[x;]) = —z; if 6(i) = 0. We will show that this unique determines the labeling for the
rest of the internal vertices of 7'(¢). Consider the clause ¢; and the corresponding subtrees T'[y; 1], T'[v;.2]
and T'[y; 3. Since the truth assignment satisfies each clause with exactly one literal, without loss generality,
assume that y; 1 is true. Then using Lemma 4, since (L, y; ;) € E(S), we have (y; ;,¢;) € E(S). For the
nodes v; ; we have 7(v; ;) < T(c;) and therefore £(v; ;) = y; ;,Vj € {1,2, 3}. Finally, the vertex labels for
the roots of the clause subtrees £(r(T'[y;1])) = £(r(T[yiz2])) = £(r(T[yi3])) = yi1 due to Lemma 3. Proof
of Proposition 2 shows that this vertex labeling is a solution of the DTI problem.

From a given vertex labeling ¢, we construct the truth assignment as follows. We set #(i) = 1 if
U(r(T[z;])) = w; and (i) = 0 if £(r(T[x;])) = —z;. Proof of Proposition 2 shows that this is a truth
assignment that satisfies each clause with exactly one true literal.

The construction of € from ¢ and ¢ from 6 are inverses of each other. If we view these constructions as
functions then they show a bijection in the solutions spaces of #1-in-3SAT and #DTI. This shows that the



number of solutions is preserved. Obviously, the reduction can be performed in polynomial time. Therefore,
the reduction is parsimonious. O

C Naive Rejection Sampling Algorithm

Here we describe the naive rejection sampling algorithm introduced in Main Text Section 5.2.1. Let h[v, s]
denote the number of vertex labelings ¢ € Lrgy, in the subtree T, of T rooted at vertex v when ¢(v) = s.
We define h[v, s] recursively as

>

1, ifve L(T), {(v) =s,

0, if v e L(T), {(v) # s,

0, ifo g L(T),7(v) & I(s),
I > nwt, ifvgLT),7(v) € I(s),

wedr (v) telc(s)

where I(s) = [7e(s), 7+(s)] and T (s) = {s,0¢c(s)}. Let ¥* = {s1,..., s} be the set of possible labels
for the root vertex r(T), i.e. ¥* = {s € ¥ | 7(r(T")) € I(s)}. The number of vertex labelings |Lrgr| is
given by > .. h[r(T), s'].

Using the count matrix h[u, s|, we introduce a subroutine that takes a vertex v and host s as input, and
uniformly samples a vertex labeling /,, of subtree T3, rooted at u subject to the restriction that £,,(u) = s (Al-
gorithm 3). The fraction p of the vertex labelings £ where £(r(T)) = sequals h[r(T), s]/ > s hr(T), 5]
Thus, to sample all vertex labelings uniformly at random, we draw a s € 3* according to the categorical
probability distribution defined by (p1, ..., px). Algorithm 4 is then used on 7" with ¢(r(T")) = s to sample
minimum transmission host labeling ¢ of 7" uniformly at random. This takes O(nm) time per sample.

For a given phylogeny and vertex labeling (7', £), it is possible to find the minimum number of trans-
mission events in polynomial time (Sashittal and El-Kebir, 2019). The direct transmission constraint is
satisfied by the vertex labeling when the number of transmission events is m — 1, where each transmission
event corresponds to an edge of the transmission tree. We can therefore draw vertex labelings from Lrgr
and only retain the solutions that belong to £ in polynomial time. Since we are uniformly sampling from
LRrEL, the retained solutions will also be uniformly sampled from L. For the counting problem we estimate
the number of vertex labelings in £ by the success rate of the sampling algorithm. Say after K draws of
samples from Lrgr,, we retain K’ vertex labelings that belongs to £. In that case the estimate of the size of

L, denote by (|L]), is given by
K/ 1/K
ien=(1- %)

From the law of large numbers, as ' — oo we have (|£|) — |£|. We now present the algorithms for naive
rejection based sampling.



Algorithm 1 ENUMRELDTI(T, /, u, 5)

Output: Set £,, of vertex labelings ¢ of T}, where ¢(u) = s
1: if u € L(T') then

2: Let s be the unique host where #(u) = s
3: return {{(u,s)}}

4: else

5.  Letwy,...,v be the children of v

6: Lq,.... L« 0,....0

7. forv € {vy,...,v;} do

8: fort € I'((u,v), s) do

9: Ly, < L, UENUMRELDTI(T, g,v,t)
10: end for

11:  end for

122 Ly <+ 0

13: fordy,..., 0 € L1 X ... X L} do

14: Ly L,U{l1U...ULlU{(u,s)}}
15:  end for

16:  return L,

17: end if

Algorithm 2 ENUMRELDTI(7), g)

Output: Set £ of optimal host labelings ¢ of T’
Let 3* be the set of hosts s where 7(r(T)) € I(s)
L+ 0
for s € >* do
L + £ UENUMRELDTI(T, Z,r(T), s)
end for
return £

AN O o S




Algorithm 3 SAMPLERELDTI(T, h, u, s)

Output: Random, optimal host labeling ¢ of T}, where ¢(u) = s
1: Let 07 (u) = {v1,...,vx} be the children of u
2: forv € {vy,...,v;} do
3: K Ztefc(s) h[”? t]

4: forteX={1,...,m} do
5: ift € T'c(s) then

6: p(t) < hlv,t]/K

7 else

8: p(t) <0

9: end if

10:  end for

11:  Draw host t* € ¥ randomly according to (p1, ..., Pm)
12: £, < SAMPLERELDTI(T, g, h,v,t*)

13:  forw € V(7)) do

14: L(w) < Ly(w)

15:  end for

16: end for

17: L(u) < s

18: return /¢

Algorithm 4 SAMPLERELDTI(T, h)

Output: Random, optimal host labeling ¢ of T’
1: Let ¥* be the set of hosts s where 7(r(71")) € I(s)
20 K ) e hr(T), 5]
3: for s € X do
4: if s € X" then

5: ps < h[r(T),s]/K

6

7

8

9

else
ps < 0
end if
: end for
10: Draw s* € X according to probabilities py, ..., pm
11: return SAMPLERELDTI(T, h,r(T'), s*)

D Consensus Transmission Tree Algorithm Proof

Theorem 1. Given aset S = {S1,---, S} of k transmission trees with edge weights wg, ,-- - , wg,, the
minimum weight spanning arborescence of the corresponding weighted parent-child graph P defines a tree
R that is a solution to the SCTT problem with the distance measure used is weighted parent-child distance.

Proof. Consider the weighted parent-child graph P for the set of transmission trees S. Since P is a complete
graph, the optimal consensus tree R is necessarily a spanning arborescence of P. The weights of the edges
in R are given by w* (Main Text Lemma 1).

w*(s,t) = arg min Z lgi(s,t) — z|.
=0 ges

10



The total WPCD of R from the set of transmission trees S is given by d(R,S) = > g.. 5 d(R, S;) where

dR,S) = Y lals.,t) —w'(s,0)l+ Y lai(s.t)]

(s,t)EE(R) (s,t)¢E(R)
= > lals,t) —w (s, —lals D)+ D> lals, ).
(s;H)EE(R) (5,)ETXET

Consequently,

dR.S)=>"" > auls.t)l+ D wp(s1b),

S,€S (s,t)ETXE (s;t)EE(R)

where the first term is a constant with respect to R and minimizing the second term is the sum of the weights

of a minimum weight spanning arborescence R of P.

E Additional Simulation Results
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Figure S6: (a) The number of vertices n in the timed phylogeny 7" for increasing number m of simulated
hosts and bottleneck size . (b) Time taken to generate 100,000 uniformly sampled solutions to the DTI

problem using TITUS for increasing values of simulated bottleneck size .
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Figure S7: Comparison of SharpTNI and TiTUS on simulated, partially sampled outbreaks. Transmis-
sions in simulated instances followed a tree-like pattern (i.e. direct transmission) but not all strains within
a host were sampled. (a) The number of solutions where the vertex labeling induces a transmission tree
(rather than a general graph) for increasing bottleneck size . (b) The fraction of simulation instances for
which each method identified a transmission tree, for increasing values of simulated bottleneck size «.

F Additional HIV Data Analysis and Implementation Details

| host | transmission window | known infector | latest sample time | entry time | removal time |

A 7 - 14/05/90 B 7/11/05 7(r(T)) 7/11/05
F | 01/02/95 - 02/08/95 A 19/09/05 01/02/95 |  19/09/05
G | 16/01/02 - 16/04/02 F 16/04/02 16/01/02 | 16/04/02
H | 29/06/95 - 24/07/95 B 25/05/98 20/06/95 | 25/05/98
T | 01/02/93 - 28/04/93 B 06/10/99 01/02/93 | 06/10/99
C | 23/09/93 - 10/01/94 B 15/12/03 23/09/93 | 15/12/03
D | 16/03/95-01/07/95 C 24/03/03 16/03/95 | 24/03/03
L | 23/09/93 - 12/03/06 C 24/03/06 23/09/93 | 24/03/06
E | 15/06/00 - 01/02/01 C 22/02/06 15/06/00 | 22/02/06
K | 01/06/04 - 15/09/04 E 30/09/04 01/06/04 |  30/09/04

Table S1: This table shows the epidemiological information provided in the HIV dataset (Vrancken et al.,
2014). The transmission window of a host is the expected time-interval during which the host was infected.
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Figure S8: (a) Transmission number and (b) number of unsampled lineages of all the solutions generated
using TITUS on the HIV dataset vs different infection recall values.
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Figure S9: The infection recall of the consensus transmission tree for solutions sampled using TITUS on
the HIV dataset for increasing values of the percentile threshold a.
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