
S1 ANNOTATED TARGET GENES FOR THE STUDIED DRUGS

Drug Annotated target genes from (Smirnov et al., 2017)

Bortezomib PSMB2, PSMA1, PSMA2, PSMA3, PSMA4, PSMA5, PSMA6, PSMA7,
PSMA8, PSMB1, PSMB10, PSMB11, PSMB3, PSMB4, PSMB5, PSMB6,
PSMB7, PSMB8, PSMB9, PSMD1, PSMD2, RELA

Cisplatin XIAP

Docetaxel BCL2, MAP2, MAP4, MAPT, NR1I2, TUBB, TUBB1

Paclitaxel BCL2, MAP2, MAP4, MAPT, NR1I2, TLR4, TUBB, TUBB1

S2 SELECTED HYPER-PARAMETERS

Selected hyper-parameters for MOLI (Sharifi-Noghabi et al., 2019):

Drug Selected hyper-parameters

Bortezomib 64 (number of nodes in the feature extractor), 1.5 (margin for the triplet loss),
0.0001 (encoder subnetwork learning rate), 40 (epochs), 0.7 and 0.3 (encoder and
classifier dropout rates), 0.01 (weight decay), 0.5 (classifier learning rate), 0.2
(regularization coefficient), 36 (batch size).

Cisplatin 64 (number of nodes in the feature extractor), 0.5 (margin for the triplet loss),
0.005 (encoder subnetwork learning rate), 40 (epochs), 0.5 and 0.5 (encoder and
classifier dropout rates), 0.001 (weight decay), 0.001 (classifier learning rate), 0.2
(regularization coefficient), 64 (batch size).

Docetaxel 128 (number of nodes in the feature extractor), 1 (margin for the triplet loss),
0.05 (encoder subnetwork learning rate), 25 (epochs), 0.6 and 0.5 (encoder and
classifier dropout rates), 0.001 (weight decay), 0.001 (classifier learning rate), 0.1
(regularization coefficient), 36 (batch size).

Paclitaxel 64 (number of nodes in the feature extractor), 1 (margin for the triplet loss), 0.0001
(encoder subnetwork learning rate), 15 (epochs), 0.5 and 0.5 (encoder and clas-
sifier dropout rates), 0.0001 (weight decay), 0.001 (classifier learning rate), 0.3
(regularization coefficient), 14 (batch size).
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Selected hyper-parameters for ADDA (Tzeng et al., 2017):

Drug Selected hyper-parameters

Bortezomib 256 (number of nodes in the feature extractor trained on the source samples, fea-
ture extractor of the target samples, and also the input layer of the classifier trained
on the source samples), 64 (number of nodes in the hidden layer of the discrimina-
tor), 0.01 (learning rate), 20 (epochs), 0.3 and 0.7 (dropout rates for target samples
feature extractor and the discriminator, respectively), no weight decay, 16 and 16
(batch size for source and target domains, respectively).

Cisplatin 256 (number of nodes in the feature extractor trained on the source samples, fea-
ture extractor of the target samples, and also the input layer of the classifier trained
on the source samples), 64 (number of nodes in the hidden layer of the discrim-
inator), 0.005 (learning rate), 20 (epochs), 0.3 and 0.6 (dropout rates for target
samples feature extractor and the discriminator, respectively), no weight decay, 8
and 16 (batch size for source and target domains, respectively).

Docetaxel 1024 (number of nodes in the feature extractor trained on the source samples,
feature extractor of the target samples, and also the input layer of the classifier
trained on the source samples), 512 (number of nodes in the hidden layer of the
discriminator), 5e-5 (learning rate), 15 (epochs), 0.3 and 0.5 (dropout rates for
target samples feature extractor and the discriminator, respectively), 0.005 (weight
decay), 16 and 32 (batch size for source and target domains, respectively).

Paclitaxel NA.

Selected hyper-parameters for ProtoNet (Snell et al., 2017):

Drug Selected hyper-parameters

Bortezomib 16 (number of nodes in the feature extractor), 5e-5 and 0.5 (learning rates for
training on source and target domains), 15 (number of epochs for the source and
target domains), 0.7 (dropout rate for the source and target domains), 2 and 8
(number of support and query), 100 (number of episodes).

Cisplatin 256 (number of nodes in the feature extractor), 0.0005 and 0.5 (learning rates for
training on source and target domains), 15 and 10 (number of epochs for the source
and target domains), 0.3 and 0.4 (dropout rate for the source and target domains),
2 and 4 (number of support and query), 100 (number of episodes).

Docetaxel 16 (number of nodes in the feature extractor), 0.0005 and 0.1 (learning rates for
training on source and target domains), 10 and 30 (number of epochs for the source
and target domains), 0.3 and 0.6 (dropout rate for the source and target domains),
4 and 8 (number of support and query), 100 (number of episodes).

Paclitaxel NA.
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Selected hyper-parameters for AITL:

Drug Selected hyper-parameters

Bortezomib 1024 (number of nodes in the layer of the feature extractor), 1024 (number of
nodes in the shared layer of the multi-task subnetwork), 1024 (number of nodes
in the hidden layer of the regression tower), 0.0005 (learning rate), 0.2 and 0.4
(regularization for global and class-wise discriminators), 16 and 16 (mini-batch
size for the source and target domains), 0.4 (dropout rate), 10 (epoch).

Cisplatin 512 (number of nodes in the hidden layer of the feature extractor), 16 (number of
nodes in the shared layer of the multi-task subnetwork), 16 (number of nodes in
the hidden layer of the regression tower), 0.05 (learning rate), 0.3 and 0.3 (regu-
larization for global and class-wise discriminators), 32 and 8 (mini-batch size for
the source and target domains), 0.15 (dropout rate), 25 (epoch).

Docetaxel 256 (number of nodes in the hidden layer of the feature extractor), 512 (number
of nodes in the shared layer of the multi-task subnetwork), 512 (number of nodes
in the hidden layer of the regression tower), 0.0001 (learning rate), 0.8 and 0.6
(regularization for global and class-wise discriminators), 32 and 32 (mini-batch
size for the source and target domains), 0.5 (dropout rate), 35 (epoch).

Paclitaxel 1024 number of nodes in the layer of the feature extractor), 1024 (number of
nodes in the shared layer of the multi-task subnetwork), 1024 (number of nodes
in the hidden layer of the regression tower), 0.0001 (learning rate), 0.9 and 0.3
(regularization for global and class-wise discriminators), 32 and 32 (mini-batch
size for the source and target domains), 0.5 (dropout rate), 20 (epoch).

Selected hyper-parameters for PRECISE (Mourragui et al., 2019):

Since this method used the same cell line dataset (source domain), we adopted the recom-
mended default settings of the original paper and only used 3-fold cross validation to tune the
predictor hyper-parameter.
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Selected hyper-parameters for (Chen et al., 2017):

Drug Selected hyper-parameters

Bortezomib 128 (number of nodes in the feature extractor), 32 (number of nodes in the hidden
layer of discriminators), 0.0001 (learning rate), 20 (epochs), 0.0001 (weight de-
cay), 0.8, 0.3, 0.2, 0.6, 0.2 (dropout rates in featuer extractor, global discriminator,
responder class discriminator, non-responder class discriminator, and classifier,
respectively), 0.9 and 0.6 (regularization coefficients for class-wise and global
discriminators, respectively), 16 and 64 (batch size for source and target domains,
respectively).

Cisplatin 512 (number of nodes in the feature extractor), 128 (number of nodes in the hid-
den layer of discriminators), 0.0001 (learning rate), 15 (epochs), 0.0001 (weight
decay), 0.3, 0.3, 0.5, 0.8, 0.5 (dropout rates in featuer extractor, global discrimina-
tor, responder class discriminator, non-responder class discriminator, and classi-
fier, respectively), 0.4 and 0.7 (regularization coefficients for class-wise and global
discriminators, respectively), 8 and 32 (batch size for source and target domains,
respectively).

Docetaxel 128 (number of nodes in the feature extractor), 64 (number of nodes in the hid-
den layer of discriminators), 0.0005 (learning rate), 5 (epochs), 0.0001 (weight
decay), 0.6, 0.4, 0.3, 0.7, 0.4 (dropout rates in featuer extractor, global discrimina-
tor, responder class discriminator, non-responder class discriminator, and classi-
fier, respectively), 1 and 0.4 (regularization coefficients for class-wise and global
discriminators, respectively), 8 and 32 (batch size for source and target domains,
respectively).

Paclitaxel 512 (number of nodes in the feature extractor), 16 (number of nodes in the hid-
den layer of discriminators), 0.0005 (learning rate), 10 (epochs), 0.1 (weight de-
cay), 0.6, 0.8, 0.8, 0.7, 0.3 (dropout rates in featuer extractor, global discriminator,
responder class discriminator, non-responder class discriminator, and classifier,
respectively), 1 and 0.8 (regularization coefficients for class-wise and global dis-
criminators, respectively), 64 and 16 (batch size for source and target domains,
respectively).

S3 STATISTICALLY SIGNIFICANT TARGET GENES IN DRUG RESPONSE
PREDICTION FOR TCGA PATIENTS

S3.1 BREAST CANCER

Drug Target gene (P-value)

Docetaxel BCL2 (P = 2.0× 10−8), MAP4 (P < 1× 10−10), MAPT (P < 1× 10−10).

Paclitaxel BLC2 (P = 1.7 × 10−4), MAP2 (P = 3.2 × 10−5), MAP4 (P < 1 × 10−10),
MAPT (P = 3.7× 10−9), TLR4 (P < 1× 10−10), TUBB (P < 1× 10−10).

Bortezomib PSMA1 (P = 0.04), PSMA4 (P = 4.7 × 10−6), PSMB1 (P = 3.8 × 10−5),
PSMB4 (P < 1 × 10−10), PSMB6 (P = 0.04), PSMB8 (P = 1.5 × 10−5),
PSMB9 (P = 4.8 × 10−8), PSMB10 (P = 7.8 × 10−4), PSMD1 (P = 1.1 ×
10−6), RELA (P < 1× 10−10).
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S3.2 PROSTATE CANCER

Drug Target gene (P-value)

Docetaxel MAP2 (P = 4.2× 10−3), MAP4 (P < 1× 10−10).

Paclitaxel BLC2 (P < 1 × 10−10), MAP2 (P = 0.001), MAP4 (P < 1 × 10−10), TLR4
(P < 1× 10−10), TUBB (P < 1× 10−10).

Bortezomib PSMA1 (P = 1.9 × 10−5), PSMA3 (P < 1 × 10−10), PSMB2 (P = 0.002),
PSMB4 (P = 9.3 × 10−5), PSMB7 (P = 0.04), PSMB8 (P = 0.02), PSMB10
(P = 7.4× 10−7), PSMD1 (P = 8.8× 10−6), RELA (P = 2.2× 10−4).

S3.3 BLADDER CANCER

Drug Target gene (P-value)

Docetaxel MAP4 (P < 1× 10−10).

Paclitaxel BLC2 (P = 2.4 × 10−5), MAP4 (P < 1 × 10−10), TLR4 (P = 7.3 × 10−4),
TUBB (P < 1× 10−10).

Bortezomib PSMA4 (P = 0.001), PSMB1 (P = 0.04), PSMB4 (P = 4.7 × 10−6), PSMB9
(P = 2.2 × 10−6), PSMB10 (P = 1.3 × 10−9), PSMD1 (P = 0.006), RELA
(P < 1× 10−10).

S3.4 KIDNEY CANCER

Drug Target gene (P-value)

Docetaxel BLC2 (P = 1.4× 10−5), MAP4 (P < 1× 10−10), MAPT (P = 2.0× 10−6).

Paclitaxel BLC2 (P = 1.1×10−6), MAP4 (P < 1×10−10), MAPT (P < 1×10−10),TLR4
(P < 1× 10−10), TUBB (P < 1× 10−10).

Bortezomib PSMA2 (P = 0.03), PSMB4 (P = 0.001), PSMB9 (P = 1 × 10−4), PSMB10
(P = 0.006), PSMD2 (P = 1× 10−5), RELA (P = 5× 10−5).

S3.5 LUNG CANCER

Drug Target gene (P-value)

Docetaxel MAP4 (P < 1× 10−10).

Paclitaxel BLC2 (P = 2.9 × 10−5), MAP4 (P < 1 × 10−10), TLR4 (P = 4.8 × 10−9),
TUBB (P < 1× 10−10).

Bortezomib PSMA1 (P = 0.005), PSMA4 (0.007), PSMB1 (0.006), PSMB8 (P = 1.9 ×
10−4), PSMB9 (P < 1 × 10−10), PSMB10 (P = 3.9 × 10−9), RELA (P <
1× 10−10).
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S4 SIGNIFICANT GENES IN TCGA ANALYSIS

The obtained results are in concordance with previous studies. For example, we observed that
Microtubule-Associated Proteins (MAPs) were significant for Docetaxel and Paclitaxel in the stud-
ied cancers which aligns with previous research on this family of proteins (Yang et al., 2017; Smoter
et al., 2011; Bhat & Setaluri, 2007). For Bortezomib, we observed significant associations for dif-
ferent proteasome subunits such as subunit alpha (PSMA) and beta (PSMB). These subunits have
been shown to be key players across different cancers (Rouette et al., 2016; Tsvetkov et al., 2017;
Li et al., 2017). We also observed significant associations for RELA (also known as Transcription
Factor p65) in all of the studied cancers which aligns with its oncogenic role across different can-
cers (Collignon et al., 2018), and moreover, with its reported associations with Bortezomib in breast
cancer (Hideshima et al., 2014), prostate cancer (Manna et al., 2013), and lung cancer (Zhao et al.,
2015).

S5 DATA PREPROCESSING STEPS

Microarray CEL files for clinical trial cohorts were downloaded from Gene Expression Omnibus
(see identifiers listed in Table 1) and for GDSC cell lines from the ArrayExpress database (E-MTAB-
3610). All raw CEL files were subjected to robust multi-array average normalization (Irizarry et al.,
2003) using the justRMA() function from the affy (v1.54.0) R package and CDF library files and
probe set annotations provided by BrainArray v22.0.0 (http://brainarray.mbni.med.umich.edu) (Dai
et al., 2005). Probe sets ambiguously mapped to Entrez genes were excluded. Expressions of the
remaining probe sets were aggregated to gene level using collapseRows() function (Miller et al.,
2011) from WGCNA (v 1.64.1) R package with method=”Average”.
TCGA expression data were obtained from Firehose (http://gdac.broadinstitute.org/), the version
published on 28.01.2016. PDX expressions were taken from supplementary data of(Gao et al.,
2015). TCGA and PDX expression values were converted to TPM and log2-transformed. All gene
names were mapped to Entrez gene ids. All expression values were standardized according to the
normalization parameters of the training data.

S6 SENSITIVITY TO HYPER-PARAMETERS

AITL can be quite sensitive to the selection of hyper-parameters, especially to the learning rate,
number of training epochs, and the dropout rate. We observe that lower learning rates tend to yield
better performance for the AITL models. In addition, a smaller number of training epochs also tends
to produce better results, which makes sense because we have limited amounts of training data, and
training with higher epochs would overfit the model. Lastly, we observe that dropout rates of around
0.4 - 0.5 result in the highest performing AITL models.
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