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A Details of the Efficient Implementation

A.1 Data Structures

In the main text, for simplicity of presentation, Q is described as a hash from span [i, j] to Qi,j , but in our actual implementation, to make sure the overall

runtime is O(nb2), we implement Q as an array of n hashes, where each Q[j] is a hash mapping i to Q[j][i] which is conveniently notated as Qi,j in

the main text. It is important to note that the first dimension j is the right boundary and the second dimension i is the left boundary of the span [i, j]. See

the following table for a summary of notations and the corresponding actual implementations. Here we use Python notation for simplicity, but in actual

system we implement with C++.

notations in this paper Python implementation

Q← hash() Q = [defaultdict(float) for _ in range(n)]

Qi,j Q[j][i]

[i, j] in Q i in Q[j]

for each i such that [i, j] in Q for i in Q[j]

delete [i, j] from Q del Q[j][i]

A.2 Complexity Analysis

In the partition function calculation (inside phase) in Fig. 3, the number of states is O(nb) because each Q[j] contains at most b states (Qi,j ’s) after

pruning. Therefore the space complexity is O(nb). For time complexity, there are three nested loops, the first one (j) with n iterations, the second (i)

and the third (k) loops both have O(b) iterations thanks to pruning, so the overall runtime is O(nb2).

A.3 Outside Partition Function and Base Pairing Probability Calculation

After we compute the partition functions Qi,j on each span [i, j] (known as the “inside partition function”), we also need to compute the complementary

function Q̂i,j for each span known as the “outside partition function” in order to derive the base-pairing probabilities. Unlike the inside phase, this outside

partition function is calculated from top down, with Q̂1,n = 1 as the base case.

Q̂i,j = Q̂i,j+1 · e
−

δ(x,j+1)
RT

+
∑

k<i

Q̂k,j+1 ·Qk,i−2 · e
−

ξ(x,i−1,j+1)
RT

+
∑

k>j+1

Q̂i,k ·Qj+2,k−1 · e
−

ξ(x,j+1,k)
RT

Note that the second line is only possible when xi−1xj+1 can form a base pair (otherwise e−
ξ(x,i−1,j+1)

RT = 0) and the third line has a constraint that

xj+1xk can form a base pair (otherwise e−
ξ(x,j+1,k)

RT = 0).

For each (i, j) where xixj can form a base pair, we compute its pairing probability:

pi,j =
∑

k≤i

Q̂k,j ·Qk,i−1 · e
−

ξ(x,i,j)
RT ·Qi+1,j−1

The whole “outside” computation takes O(n3) without pruning, but also O(nb2) with beam pruning. See Fig. SI 2 for the pseudocode to compute

the outside partition function and base pairing probabilities.
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B Details of datasets, baselines and methods

B.1 Datasets

We use sequences from two datasets, ArchiveII and RNAcentral. The archiveII dataset (available in http://rna.urmc.rochester.edu/pub/

archiveII.tar.gz) is a diverse set with 3,857 RNA sequences and their secondary structures. It is first curated in the 1990s to contain sequences

with structures that were well-determined by comparative sequence analysis (Mathews et al., 1999)and updated later with additional structures (Sloma

and Mathews, 2016). We remove 957 sequences that appear both in the ArchiveII and the S-Processed datasets (Andronescu et al., 2007), because

CONTRAfold uses S-Processed for training. We also remove all 11 Group II Intron sequences because there are so few instances of these that are available

electronically. Additionally, we removed 30 sequences in the tmRNA family because the annotated structure for each of these sequences contains fewer

than 4 pseudoknots, which suggests the structures are incomplete. These preprocessing steps lead to a subset of ArchiveII with 2,859 reliable secondary

structure examples distributed in 9 families. See SI 1 for the statistics of the sequences we use in the ArchiveII dataset. Moreover, we randomly sampled

22 longer RNA sequences (without known structures) from RNAcentral (RNAcentral Consortium et al., 2017) (https://rnacentral.org/), with

sequence lengths ranging from 3,048 nt to 244,296 nt. For the sampling, we evenly split the range from 3, 000 to 244, 296 (the longest) into 24 bins by

log-scale, and for each bin we randomly select a sequence (there are bins with no sequences).

To show the approximation quality on random RNA sequences, we generated 30 sequences with uniform distribution over {A, C, G, U}. The lengths

of these sequences are spaced in 100 nucleotide intervals from 100 to 3,000.

# of seqs length

Family total used avg max min

tRNA 557 74 77.3 88 58

5S rRNA 1,283 1,125 118.8 135 102

SRP RNA 928 886 186.1 533 28

RNase P RNA 454 182 344.1 486 120

tmRNA 462 432 369.1 433 307

Group I Intron 98 96 424.9 736 210

Group II Intron 11 0 - - -

telomerase RNA 37 37 444.6 559 382

16S rRNA 22 22 1,547.9 1995 950

23S rRNA 5 5 2,927.4 2968 2904

Overall 3,846 2,859 221.1 2968 28

Table SI 1. Statistics of the sequences in the ArchiveII dataset used in this work.

B.2 Baseline Software

We use two baseline software packages: (1) Vienna RNAfold (Version 2.4.11) from https://www.tbi.univie.ac.at/RNA/download/

sourcecode/2_4_x/ViennaRNA-2.4.11.tar.gz and (2) CONTRAfold (Version 2.0.2) fromhttp://contra.stanford.edu/. Vienna

RNAfold is a widely-used RNA structure prediction package, while CONTRAfold is a successful machine learning-based RNA structure prediction system.

Both provide partition function and base pairing probability calculations based on the classical cubic runtime algorithm. Our comparisons mainly focus

on the systems with the same model, i.e., LinearPartition-V vs. Vienna RNAfold and LinearPartition-C vs. CONTRAfold. In this way the differences are

based on algorithms themselves rather than models. We found a bug in CONTRAfold by comparing our results to CONTRAfold, which led to overcounting

multiloops in the partition function calculation. We corrected the bug, and all experiments are based on this bug-fixed version of CONTRAfold.

B.3 Evaluation Metrics and Significance Test

Due to the uncertainty of base-pair matches existing in comparative analysis and the fact that there is fluctuation in base pairing at equilibrium, we consider

a base pair to be correctly predicted if it is also displaced by one nucleotide on a strand (Mathews et al., 1999). Generally, if a pair (i, j) is in the predicted

structure, we consider it a correct prediction if one of (i, j), (i− 1, j), (i+ 1, j), (i, j − 1), (i, j + 1) is in the ground truth structure.

We use Positive Predictive Value (PPV) and sensitivity as accuracy measurements. Formally, denote y as the predicted structure and y
∗ as the ground

truth, we have:

PPV =
#TP

#TP +#FP

=
|pairs(y) ∩ pairs(y∗)|

|pairs(y)|

Sensitivity =
#TP

#TP +#FN

=
|pairs(y) ∩ pairs(y∗)|

|pairs(y∗)|

where #TP is the number of true positives (correctly predicted pairs), #FP is the number of false positives (wrong predicted pairs) and #FN is the number

of false negatives (missing ground truth pairs).

We test statistical significance using a paired, two-sided permutation test (Aghaeepour and Hoos, 2013). We follow the common practice, choosing

10, 000 as the repetition number and α = 0.05 as the significance threshold.
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B.4 Curve Fitting

We determine the best exponent a for the scaling curve O(na) for each data series in Figures 2 and 4. Specifically, we use f(x) = ax + b to fit the

log-log plot of those series in Gnuplot; e.g., fitting log tn = a logn + b, where tn is the running time on a sequence of length n, so that tn = ebna.

Gnuplot uses the nonlinear least-squares Marquardt-Levenberg algorithm.

C Supporting Figures and Tables

1: function beamprune(Q, j, b)

2: candidates ← hash() ⊲ hash table: from candidates i to score

3: for each i such that [i, j] in Q do

4: candidates[i]← Q1,i−1 ·Qi,j ⊲ like LinearFold, use Q1,i−1 as prefix score

5: candidates ← SelectTopB(candidates, b) ⊲ select top-b states by score

6: for each i such that [i, j] in Q do

7: if key i not in candidates then

8: delete [i, j] from Q ⊲ prune low-scoring states

Fig. SI 1. The BeamPrune function from the Pseudocode of our main algorithm (Fig. 3).

1: function BasePairingProbs(x, Q) ⊲ outside calculation

2: n← length of x

3: Q̂← hash() ⊲ hash table: from span [i, j] to Q̂i,j : outside partition function

4: p← hash() ⊲ hash table: from span [i, j] to pi,j : base-pairing probs

5: Q̂1,n ← 1 ⊲ base case

6: for j = n downto 1 do

7: for each i such that [i, j − 1] in Q do

8: Q̂i,j−1 += Q̂i,j · e
−

δ(x,j)
RT ⊲ skip

9: if xi−1xj in {AU, UA, CG, GC, GU, UG} then

10: for each k such that [k, i− 2] in Q do

11: Q̂k,i−2 += Q̂k,j ·Qi,j−1 · e
−

ξ(x,i−1,j)
RT ⊲ pop: left

12: Q̂i,j−1 += Q̂k,j ·Qk,i−2 · e
−

ξ(x,i−1,j)
RT ⊲ pop: right

13: pi−1, j +=
Q̂k,j ·Qk,i−2 · e

−

ξ(x,i−1,j)
RT ·Qi,j−1

Q1,n

⊲ accumulate base pairing probs

14: return p ⊲ return the (sparse) base-pairing probability matrix

Fig. SI 2. Outside partition function and base pairing probabilities calculation for a simplified version of the LinearPartition. Q is the (inside) partition function calculated by the pseudocode

in Fig. 3, and Q̂ is the outside partition function. The actual algorithm using the Turner model is in our GitHub codebase.

Family percentage of violation sequences (%) avg. violation ratio per sequence (%)

tRNA 85.1 8.6

5S rRNA 100.0 27.0

SRP RNA 92.3 33.1

RNase P RNA 100.0 45.0

tmRNA 100.0 40.6

Group I Intron 100.0 43.3

telomerase RNA 100.0 53.9

16S rRNA 100.0 52.3

23S rRNA 100.0 53.3

Overall 97.5 39.7

Table SI 2. Statistic of negative unpaired probabilities for Vienna RNAplfold. RNAplfold base pairing probabilities are not normalized, resulting in negative

unpaired probabilities. The second column (percentage of violation sequences) shows the percentage of sequences that have at least one nucleotide with negative

unpaired probability. The third column (avg. violation ratio per sequence) shows the percentage of nucleotides that have negative unpaired probability per sequence.

The overall ratio is averaged on families. To avoid precision issues, we set the negative threshold as -0.01.
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Fig. SI 3. The comparison of normalized ensemble defects (normalized by sequence length) on the ArchiveII dataset. A: Normalized ensemble defect between Vienna RNAfold and

LinearPartition-V for each sequence; the trend is similar as Fig. 5A, but the deviations for tmRNAs are more apparent; the point with red shaded are the example in Fig. 6. B: Normalized

ensemble defect difference for each family; for longer families, e.g., Group I Intron, telomerase RNA, 16S and 23S rRNA, LinearPartition has lower normalized ensemble defect differences;

note that LinearPartition’s normalized ensemble defects are significantly better than Vienna RNAfold on Group I Intron (p < 0.01), but significantly worse on tmRNA (p < 0.01).
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Fig. SI 4. Accuracy of ThreshKnot using base pairing probabilities from Vienna RNAfold and LinearPartition on the ArchiveII dataset. A: Overall PPV-Sensitivity tradeoff of MFE (single

point) and ThreshKnot with varying θ. B & C: PPV and Sensitivity comparisons of ThreshKnot structures for each family. D: Accuracy comparison of long-distance base pairs (>500 nt

apart) in the ThreshKnot structures. We conclude that ThreshKnot predictions based on those two are almost identical for all θ’s. LinearPartition-V is substantially better on long-range base

pairs in ThreshKnot predictions.

A B

 35

 45

 55

 65

 75

tRNA
5S rRNA

SRP RNA

RNase P RNA

tmRNA
Group I Intron

telomerase RNA

16S rRNA

23S rRNA

overall

P
P

V

CONTRAfold MFE
LinearFold-C

CONTRAfold + MEA (γ=3)
LinearPartition-C + MEA (γ=3)

 35

 45

 55

 65

 75

tRNA
5S rRNA

SRP RNA

RNase P RNA

tmRNA
Group I Intron

telomerase RNA

16S rRNA

23S rRNA

overall

S
e

n
s
it
iv

it
y

Fig. SI 5. Accuracy comparison of MEA structures (γ = 3) between CONTRAfold and LinearPartition-C on the ArchiveII dataset. γ is the hyperparameter balances PPV and Sensitivity.

Note that LinearPartition-C + MEA is significantly worse than CONTRAfold + MEA on two families in both PPV and Sensitivity, tmRNA and RNase P RNA (p < 0.01).
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Fig. SI 6. Accuracy comparison of ThreshKnot structure (θ = 0.2) between CONTRAfold and LinearPartition-C on ArchiveII dataset. θ is the hyperparameter that balances PPV and

Sensitivity. Note that LinearPartition-C + ThreshKnot is significantly worse than CONTRAfold + ThreshKnot on two families in both PPV and Sensitivity, tmRNA and RNase P RNA

(p < 0.01), and significantly better on three longer families in Sensitivity, Group I Intron (p < 0.01), telomerase RNA and 16S rRNA (0.01 ≤ p < 0.05).
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Fig. SI 7. Accuracy comparison of base pair prediction with different base pair distances. Each bar represents the overall PPV/sensitivity of all predicted base pairs in a certain length range

across all sequences. LinearPartition performs best on long base pairs over four systems. A and B: Comparison using MEA structures. C and D: Comparison using ThreshKnot structures.

In all cases, LinearPartition’s base pair probabilities lead to substantially better accuracies on long-distance pairs (500+ nt apart).
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Fig. SI 8. Comparison of the uncertainty of the base pairing probability distribution from Vienna RNAfold and LinearPartition. A: Average positional structural entropy H(p) comparison;

LinearPartition has noticeably lower entropy. B: LinearPartition starts higher and finishes lower than Vienna RNAfold in a sorted probability curve for E. coli 23S rRNA, suggesting lower

entropy.
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Fig. SI 9. Pair probability distributions of Vienna RNAfold and LinearPartition-V are similar. A: Pair probability distribution of Vienna RNAfold; B: Pair probability distribution of

LinearPartition-V. The count of LinearPartition-V in bin [99,100) is slightly bigger than Vienna RNAfold, while the count in bin [0,1) (cut here at 50,000) is much less than Vienna RNAfold

(2,068,758 for LinearPartition-V and 48,382,357 for Vienna RNAfold).
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Fig. SI 10. Impact of beam size on accuracy. A: Overall PPV and Sensitivity with beam size. B–C: tmRNA and 16S rRNA PPV and Sensitivity against beam size, respectively. Note that

the results of ThreshKnot using RNAfold (yellow triangles in A–C) are identical to ThreshKnot using the exact version of LinearPartition (b=∞).
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Fig. SI 11. Approximation quality comparisons of Vienna RNAplfold and LinearPartition on long sequences. Given the same runtime (x-axis), the averaged RMSDs of LinearPartition

are smaller than RNAplfold in most cases. A: Comparison on 16S rRNA family. B: Comparison on 23S rRNA family. C: Comparison on lncRNAs from RNAcentral. In A–C, we choose

window size of 70, 100, 150, 200, 300, 500, 800 for RNAplfold, and beam size of 10, 20, 50, 75, 100, 120, 150, 200 for LinearPartition.
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input x1 . . . xn

states E 〈0, j〉 : 〈α,Q〉 prefix structure

P 〈i, j〉 : 〈(α) , Q〉 pair

H 〈i, j〉 : 〈(... , Q〉 hairpin candidate

M1 〈i, j〉 : 〈(α)β ,Q〉 one or more pairs

M2 〈i, j〉 : 〈(α)β(γ) , Q〉 two or more pairs

M 〈i, j〉 : 〈(...(α)β(γ)... , Q〉 multiloop candidate

Shaded substrings are balanced in brackets.

QX
i,j is the partition function of state X 〈i, j〉

QX
i,j ← 0 for all 1 ≤ i < j ≤ n,X ∈ {P,M1,M2,M}

axiom QE

0,1 ← 1 goal E 〈0, n+1〉 : 〈α,Q〉

push QH

j,next(j,j)
← 1

Hjump QH

i,next(i,j)
← 1 next(i, j) , min{k | k > j, (xi, xk) match}

skip QE

0,j+1 += QE

0,j · e
−

sc
E
w

(x,j,j+1)

RT

Q
M1

i,j+1 += Q
M1

i,j · e
−

wmulti
unpair
RT

reduce Q
M2

k,j
+=

∑
k<i<j

Q
M1

k,i
·QP

i,j · e
−

wmulti
bp (x,i,j)

RT

combine QE

0,j +=
∑

0<i<j

QE

0,i ·Q
P
i,j · e

−
scE

w
(x,i,j)

RT

XtoM1 Q
M1

i,j += QP

i,j · e
−

wmulti
bp (x,i,j)

RT

Q
M1

i,j += Q
M2

i,j

Mleft QM

k,next(k,j)
+= Q

M2

i,j · e
−

u·wmulti
unpair

RT u = (next(k, j)−j)+(i−k−1),

i−k−1 ≤ 30

Mjump QM

i,next(i,j)
+= QM

i,j · e
−

u·wmulti
unpair

RT u = next(i, j)−j

hairpin QP

i,j+1 += QH

i,j · e
−

sc
H
w

(x,i,j)

RT

singleloop QP

k,l
+= QP

i,j · e
−

sc
S
w

(x,i,j,k,l)

RT (xk, xl−1) match, (l−j−1)+(i−k−1) ≤ 30

multiloop QP

i,j+1 += QM

i,j · e
−

wmulti
base +wmulti

bp (x,i,j)

RT

Fig. SI 12. The partition function recursions used in LinearPartition real system. scE
w

(x, ·, ·), wmulti
base , wmulti

bp (x, ·, ·), wmulti
unpair , sc

S
w

(x, ·, ·, ·, ·), scH
w

(x, ·, ·) are the various energy or

scoring parameters (E stands for external loop, multi for multiloop, S for single loop, and H for hairpin loop). The next(i, j) returns the next position after xj that can pair with xi;

CONTRAfold, ViennaRNA, and LinearFold also use the “jumping” trick.


