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Abstract

Motivation: Metagenomics studies have provided key insights into the composition and structure

of microbial communities found in different environments. Among the techniques used to analyse

metagenomic data, binning is considered a crucial step to characterise the different species of

microorganisms present. The use of short-read data in most binning tools poses several limitations, such

as insufficient species-specific signal, and the emergence of long-read sequencing technologies offers us

opportunities to surmount them. However, most current metagenomic binning tools have been developed

for short reads. The few tools that can process long reads either do not scale with increasing input size or

require a database with reference genomes that are often unknown. In this paper, we present MetaBCC-

LR, a scalable reference-free binning method which clusters long reads directly based on their k -mer

coverage histograms and oligonucleotide composition.

Results: We evaluate MetaBCC-LR on multiple simulated and real metagenomic long-read datasets

with varying coverages and error rates. Our experiments demonstrate that MetaBCC-LR substantially

outperforms state-of-the-art reference-free binning tools, achieving ∼13% improvement in F1-score and

∼30% improvement in ARI compared to the best previous tools. Moreover, we show that using MetaBCC-

LR before long read assembly helps to enhance the assembly quality while significantly reducing the

assembly cost in terms of time and memory usage. The efficiency and accuracy of MetaBCC-LR pave the

way for more effective long-read based metagenomics analyses to support a wide range of applications.

Availability: The source code is freely available at: https://github.com/anuradhawick/MetaBCC-LR.

Contact: anuradha.wickramarachchi@anu.edu.au and yu.lin@anu.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Trinucleotide Composition and k -mer Coverage
Distributions of ONT Reads

Figure 1 denotes the Trinucleotide composition of 100 non-overlapping

Oxford Nanopore (ONT) reads simulated from the reference genome of

P. aeruginosa. We can see that the trinucleotide frequencies of ONT reads

follow a close pattern to that of the reference genome despite the high error

rates.

2 Datasets

Detailed information about the simulated PacBio datasets such as the type

of reads simulated, the species present, size of the genomes of each species,

coverage, size of the dataset and average read length can be found in

Table 1. Details about the simulated Nanopore (ONT) datasets can be

found in Table 2. Further information about the publicly available datasets

can be found in Table 3 and details about the 100-genome dataset can be

found in Table 4.
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Table 1. Information about the simulated PacBio datasets

Dataset Read type Species present Genome size (Mb) Coverage Abundance Dataset size (GB) Average read length (kb)

Zymo-1Y2B PacBio

S. cerevisiae 13.163 15x 4.4%

4.2 8.298P. aeruginosa 6.792 550x 82.9%

L. fermentum 1.905 300x 12.7%

Zymo-1Y3B PacBio

S. cerevisiae 13.163 15x 3.4%

5.45 8.297
P. aeruginosa 6.792 550x 64.6%

L. fermentum 1.905 300x 9.9%

E. faecalis 2.845 450x 22.1%

Zymo-2Y2B PacBio

S. cerevisiae 13.163 15x 4.2%

4.35 8.299
C. neoformans 19.325 10x 4.1%

P. aeruginosa 6.792 550x 79.5%

L. fermentum 1.905 300x 12.2%

Zymo-2Y3B PacBio

S. cerevisiae 13.163 15x 3.3%

5.65 8.298

C. neoformans 19.325 10x 3.2%

P. aeruginosa 6.792 550x 62.5%

L. fermentum 1.905 300x 9.6%

E. faecalis 2.845 450x 21.4%

Zymo-2Y4B PacBio

S. cerevisiae 13.163 15x 2.6%

7.15 8.294

C. neoformans 19.325 10x 2.5%

P. aeruginosa 6.792 550x 49.0%

L. fermentum 1.905 300x 7.5%

E. faecalis 2.845 450x 16.8%

S. aureus 2.730 600x 21.5%

Sharon PacBio

E. faecalis 3.069 2370x 72.6%

9.8 8.281

S. aureus 2.913 677x 19.7%

P. rhinitidis 2.562 148x 3.8%

C. avidum 2.562 136x 3.5%

S. epidermidis 2.536 17x 0.4%

Coral+Symbio PacBio
P. lutea 561.222 20x 47.2%

27.65 8.865
Cladocopium C15 628.606 20x 52.8%

Table 2. Information about the simulated ONT datasets

Dataset Read type Species present Genome size (Mb) Coverage Abundance Dataset size (GB) Average read length (kb)

Zymo-1Y2B-ONT ONT

S. cerevisiae 13.163 15x 4.4%

5.30 8.330P. aeruginosa 6.792 550x 82.9%

L. fermentum 1.905 300x 12.7%

Zymo-1Y3B-ONT ONT

S. cerevisiae 13.163 15x 3.4%

6.50 8.334
P. aeruginosa 6.792 550x 64.6%

L. fermentum 1.905 300x 9.9%

E. faecalis 2.845 450x 22.1%

Zymo-2Y2B-ONT ONT

S. cerevisiae 13.163 15x 4.2%

5.50 8.325
C. neoformans 19.325 10x 4.1%

P. aeruginosa 6.792 550x 79.5%

L. fermentum 1.905 300x 12.2%

Zymo-2Y3B-ONT ONT

S. cerevisiae 13.163 15x 3.3%

6.70 8.333

C. neoformans 19.325 10x 3.2%

P. aeruginosa 6.792 550x 62.5%

L. fermentum 1.905 300x 9.6%

E. faecalis 2.845 450x 21.4%

Zymo-2Y4B-ONT ONT

S. cerevisiae 13.163 15x 2.6%

8.20 8.329

C. neoformans 19.325 10x 2.5%

P. aeruginosa 6.792 550x 49.0%

L. fermentum 1.905 300x 7.5%

E. faecalis 2.845 450x 16.8%

S. aureus 2.730 600x 21.5%

3 Evaluation Criteria

The binning result is represented as a M × N matrix where M refers to

the number of bins and N refers to the number of species. In this matrix,

the element Rij denotes the number of reads in bin i and that belong to

species j. Let T be the total number of reads binned. The precision, recall,



MetaBCC-LR 3

AA
A

AA
C

AA
G

AA
T

AC
A

AC
C

AC
G

AC
T

AG
A

AG
C

AG
G

AT
A

AT
C

AT
G

CA
A

CA
C

CA
G

CC
A

CC
C

CC
G

CG
A

CG
C

CT
A

CT
C

GA
A

GA
C

GC
A

GC
C

GG
A

GT
A

TA
A

TC
A

Trinucleotides

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
No

rm
al

ise
d 

fre
qu

en
cy

Trinucleotide composition of non-overlapping long reads (ONT)
Reference Genome

Fig. 1: Trinucleotide composition of 100 non-overlapping Oxford

Nanopore (ONT) reads simulated from the reference genome of P.

aeruginosa. Normalised frequencies are obtained by dividing each trimer

occurrence by the total number of trimers observed.

F1 score and Adjusted Rand Index (ARI) are calculated as follows (Girotto

et al., 2016; Wang et al., 2012, 2017).

Precision(%) =

∑M
i=1

maxj{Rij}
∑M

i=1

∑N
j=1

{Rij}
× 100 (1)

Recall(%) =

∑N
j=1

maxi{Rij}
∑M

i=1

∑N
j=1

{Rij}+ Number of unclassified reads
× 100

(2)
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Fig. 2: The k-mer coverage histograms of reads from species of different

abundances in the Zymo-1Y3B-ONT dataset

F1 score(%) = 2×
Precision×Recall

Precision+Recall
× 100 (3)

ARI(%) =

∑M
i=1

∑N
j=1

(Rij

2

)

− t3
1

2
(t1 + t2)− t3

× 100 (4)

where t1 =
M
∑

i=1

(

∑N
j=1

Rij

2

)

, t2 =
N
∑

j=1

(

∑M
i=1

Rij

2

)

, and t3 =
t1t2
(

T

2

)

Table 3. Information about the publicly available datasets. †The coverage values for the Zymo-All dataset were obtained from Kolmogorov et al. (2019). *The

coverage values for the ASM datasets were obtained from the NCBI SRA taxonomy analysis.

Dataset Read type Species present Genome size (Mb) Coverage Abundance Dataset size (GB) Average read length (kb)

Zymo-All† ONT

P. aeruginosa 6.792 155x 9.7%

14.24 4.079

E. coli 4.875 220x 9.9%

S. enterica 4.760 227x 10.0%

L. fermentum 1.905 528x 9.3%

E. faecalis 2.845 464x 12.2%

S. aureus 2.730 445x 11.2%

L. monocytogenes 2.992 525x 14.5%

B. subtilis 4.045 516x 19.3%

S. cerevisiae 13.163 17x 2.1%

C. neoformans 19.325 10x 1.8%

ASM-0* PacBio

P. aeruginosa 6.631 5.8x 36.0%

0.10 10.601

A. pittii 3.917 5.9x 21.6%

S. epidermidis 2.535 6.1x 14.5%

C. acnes 2.524 6.1x 14.4%

S. mitis 2.177 6.6x 13.5%

ASM-5* PacBio

P. aeruginosa 6.631 5.4x 36.1%

0.10 10.313

A. pittii 3.917 5.5x 21.7%

S. epidermidis 2.535 5.6x 14.3%

C. acnes 2.524 5.7x 14.5%

S. mitis 2.177 6.1x 13.4%

ASM-10* PacBio

P. aeruginosa 6.631 5.1x 36.0%

0.10 10.322

A. pittii 3.917 5.2x 21.7%

S. epidermidis 2.535 5.3x 14.3%

C. acnes 2.524 5.4x 14.5%

S. mitis 2.177 5.8x 13.4%

ASM-15* PacBio

P. aeruginosa 6.631 4.8x 35.9%

0.10 10.330

A. pittii 3.917 4.9x 21.7%

S. epidermidis 2.535 5.0x 14.3%

C. acnes 2.524 5.1x 14.5%

S. mitis 2.177 5.5x 13.5%
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Table 4. Information about the 100-genomes dataset. Relative abundance ratios were used according to the simMC+ dataset (Wu et al., 2014)

.

NCBI Genbank ID Species present Relative abundance ratios

256653503 Acetobacter pasteurianus 14.5%

330827700 Aeromonas veronii 14.5%

398314590 Amycolatopsis mediterranei 11.6%

308175814 Arthrobacter arilaitensis 7.0%

158421624 Azorhizobium caulinodans 4.7%

217957581 Bacillus cereus 4.3%

296500838 Bacillus thuringiensis 1.2%

42521650 Bdellovibrio bacteriovorus 0.6%

119025018 Bifidobacterium adolescentis 0.6%

295793053 Bifidobacterium animalis 0.6%

343385146 Brachyspira intermedia 0.5%

15791399 Campylobacter jejuni 0.5%

71082709 Candidatus Pelagibacter ubique 0.5%

194246403 Candidatus Phytoplasma mali 0.5%

256370581 Candidatus Sulcia muelleri 0.5%

297749010 Chlamydia trachomatis 0.5%

334694771 Chlamydophila psittaci 0.5%

325507407 Clostridium acetobutylicum 0.5%

331268188 Clostridium botulinum 0.5%

28209834 Clostridium tetani 0.5%

125972525 Clostridium thermocellum 0.5%

376247367 Corynebacterium diphtheriae 0.5%

385806437 Corynebacterium pseudotuberculosis 0.5%

334695745 Corynebacterium ulcerans 0.5%

284928601 Cyanobacterium UCYN 0.5%

307149945 Cyanothece sp 0.5%

46562128 Desulfovibrio vulgaris 0.5%

58616727 Ehrlichia ruminantium 0.5%

378937014 Enterococcus faecium 0.5%

336065242 Erysipelothrix rhusiopathiae 0.5%

209917191 Escherichia coli 0.5%

385805051 Fervidicoccus fontis 0.5%

302325342 Fibrobacter succinogenes 0.5%

347534971 Flavobacterium branchiophilum 0.5%

118496615 Francisella novicida 0.5%

156501369 Francisella tularensis 0.5%

19703352 Fusobacterium nucleatum 0.5%

333392846 Gardnerella vaginalis 0.5%

322433659 Granulicella tundricola 0.5%

148826757 Haemophilus influenzae 0.5%

301154649 Haemophilus parainfluenzae 0.5%

170717206 Haemophilus somnus 0.5%

12057215 Halobacterium sp 0.5%

261854630 Halothiobacillus neapolitanus 0.5%

261838873 Helicobacter pylori 0.5%

338736863 Hyphomicrobium sp 0.5%

385808586 Ignavibacterium album 0.5%

375256816 Klebsiella oxytoca 0.5%

332290650 Krokinobacter sp 0.5%

116332681 Lactobacillus brevis 0.5%

327384027 Lactobacillus casei 0.5%

104773257 Lactobacillus delbrueckii 0.5%

94986445 Lawsonia intracellularis 0.5%

296105497 Legionella pneumophila 0.5%

330833867 Metallosphaera cuprina 0.5%

124484829 Methanocorpusculum labreanum 0.5%

19918815 Methanosarcina acetivorans 0.5%

Continued to next page
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.

NCBI Genbank ID Species present Relative abundance ratios

73667559 Methanosarcina barkeri 0.5%

239916571 Micrococcus luteus 0.5%

356592064 Mycobacterium bovis 0.5%

108796981 Mycobacterium sp 0.5%

330723203 Mycoplasma hyorhinis 0.5%

308388224 Neisseria meningitidis 0.5%

300112745 Nitrosococcus watsonii 0.5%

325980881 Nitrosomonas sp 0.5%

54021964 Nocardia farcinica 0.5%

325278757 Odoribacter splanchnicus 0.5%

386720569 Paenibacillus mucilaginosus 0.5%

261403876 Paenibacillus sp 0.5%

54307237 Photobacterium profundum 0.5%

126695337 Prochlorococcus marinus 0.5%

347537839 Pseudogulbenkiania sp 0.5%

313496345 Pseudomonas putida 0.5%

116249766 Rhizobium leguminosarum 0.5%

111017022 Rhodococcus jostii 0.5%

380760311 Rickettsia prowazekii 0.5%

378722019 Rickettsia rickettsii 0.5%

374318767 Rickettsia slovaca 0.5%

99079841 Ruegeria sp 0.5%

194447306 Salmonella enterica 0.5%

269118642 Sebaldella termitidis 0.5%

114045513 Shewanella sp 0.5%

30061571 Shigella flexneri 0.5%

85057978 Sodalis glossinidius 0.5%

311222926 Staphylococcus aureus 0.5%

182682970 Streptococcus pneumoniae 0.5%

28894912 Streptococcus pyogenes 0.5%

354984442 Streptococcus suis 0.5%

116626972 Streptococcus thermophilus 0.5%

290954631 Streptomyces scabiei 0.5%

51891138 Symbiobacterium thermophilum 0.5%

320114857 Thermoanaerobacter brockii 0.5%

307723218 Thermoanaerobacter sp 0.5%

242397997 Thermococcus sibiricus 0.5%

239819985 Variovorax paradoxus 0.5%

323436265 Weeksella virosa 0.5%

225629872 Wolbachia sp 0.5%

154243958 Xanthobacter autotrophicus 0.5%

162418099 Yersinia pestis 0.5%

4 Results of the ONT Read Datasets

To demonstrate how MetaBCC-LR handles Nanopore reads, all the Zymo

datasets were simulated with DeepSimulator (Li et al., 2018) according to

the Zymo-All dataset (Nicholls et al., 2019) and binned using MetaBCC-

LR. We binned this dataset using MetaBCC-LR and the evaluation results

are tabulated in Table 5 in comparison with the results of the corresponding

PacBio datasets.

5 Effect of Initial Sample Size

We selected sample sizes 0.5%, 1% and 1.5% of reads from each of

the complete datasets to determine the number of bins and build their

corresponding statistical profiles. Then, we calculated the precision, recall,

F1-score and ARI for the binned sample of reads and the values can

be found in Table 6. It can be clearly observed from Table 6 that the

increase in sample size has not improved the evaluation scores. Therefore,

MetaBCC-LR uses 1% sampling rate by default to perform binning.

6 Memory Usage and Time Complexity of
MetaBCC-LR

MetaBCC-LR uses several performance enhancements including

multi-threading and in-memory lookup tables to perform computational

steps faster. In the Step 1, the k-mer coverage histograms are computed

using 15-mer counts of the entire dataset. The k-mers are counted using

DSK (Rizk et al., 2013) which can operate with multiple threads. All the

15-mer counts are stored in memory as an array of 415 indices holding

unsigned 32-bit integers (sufficiently large to store k-mer counts up to
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Table 5. Performance comparison of MetaBCC-LR for PacBio and ONT reads.

Dataset Read type No. of Bins Precision Recall F1 score ARI

Zymo-1Y2B
PacBio 3 99.47% 99.47% 99.47% 98.87%

ONT 3 98.99% 98.99% 98.99% 97.63%

Zymo-1Y3B
PacBio 4 99.27% 99.27% 99.27% 98.57%

ONT 4 98.90% 98.90% 98.90% 97.56%

Zymo-2Y2B
PacBio 4 99.51% 99.51% 99.51% 98.28%

ONT 4 99.11% 99.11% 99.11% 97.93%

Zymo-2Y3B
PacBio 5 99.24% 99.24% 99.24% 97.78%

ONT 5 98.85% 98.85% 98.85% 97.84%

Zymo-2Y4B
PacBio 6 98.46% 98.46% 98.46% 97.21%

ONT 6 93.57% 93.57% 93.57% 88.76%

Table 6. Comparison of evaluation metrics for varying sample sizes of the simulated Zymo datasets.

Dataset Sample size No. of bins identified Precision Recall F1 score ARI

Zymo-1Y2B

0.5% 3 99.47% 99.47% 99.47% 98.30%

1% 3 99.47% 99.47% 99.47% 98.87%

1.5% 3 99.47% 99.47% 99.47% 98.31%

Zymo-1Y3B

0.5% 4 98.16% 98.16% 98.16% 95.46%

1% 4 99.27% 99.27% 99.27% 98.57%

1.5% 4 99.21% 99.21% 99.21% 97.87%

Zymo-2Y2B

0.5% 4 98.74% 98.74% 98.74% 97.55%

1% 4 99.51% 99.51% 99.51% 98.28%

1.5% 4 99.31% 99.31% 99.31% 98.29%

Zymo-2Y3B

0.5% 5 98.24% 98.24% 98.24% 97.58%

1% 5 99.24% 99.24% 99.24% 97.78%

1.5% 5 99.10% 99.10% 99.10% 98.13%

Zymo-2Y4B

0.5% 6 97.82% 97.82% 97.82% 96.28%

1% 6 98.46% 98.46% 98.46% 97.21%

1.5% 6 98.10% 98.10% 98.10% 96.75%

232). This enables the O(1) time lookup of 15-mer counts. This requires

an initial memory allocation of 4GB which is a reasonable allocation given

the performance gain compared to a much slower binary search.

Conversion of reads into 15-mer coverage histograms in Step 1 and

computation of trinucleotide composition profiles in Step 3 are performed

in batches of 100,000 reads with multiple threads (8 by default). This will

require roughly 1GB of memory for Step 1 and Step 2 (on top of 4GB in

the Step 1 for an average read length of 10,000bp). Raw data is always

converted into binary representation of 2 bits per nucleotide.

Steps 2 and Step 4 of BH-tSNE (Van Der Maaten, 2014) dimension

reduction and DB-SCAN (Ester et al., 1996) clustering run on a single

thread with O(Nlog(N)) and O(N.d) respectively, where N is the

number of data points and d is the number of dimensions (Note that d=2 in

these steps). DB-SCAN is performed using multiple threads (8 by default).

Step 5 involves the assignment of all the reads into the bins identified.

This is performed in batches of 100,000 reads with 8 threads by default

using approximately 384MB of memory. This is because the final

classification is performed using the numeric vectors obtained in Step

1 and Step 3. In conclusion, all the steps of MetaBCC-LR are performed

under 5GB of peak memory usage.
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