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Sections S1 and S2 constitute an extended version
of the sections on identifiability and identifiability rela-
tionships in the Methods part of the main text. They in-
clude additional information and examples, and explicit
derivations that were abbreviated in the main text.

Section S4 provides additional details and data for
the optimization of experimental design in KEGG path-
ways.

S1 Identifiability
We want to consider a network of n interacting nodes
whose abundances or magnitudes, x, evolve in time ac-
cording to a set of (unknown) differential equations

ẋ = f(x,p). (1)

We assume that we can experimentally manipulate the
system with p different types of perturbations, each of
which is represented by one of the p entries of parameter
vector p. We shall only consider binary perturbations
that can either be fully switched on or off. To keep
notation simple and without loss of generality, we thus
define f(x,p), such that the k-th type of perturbation
changes parameter pk from its unperturbed state pk = 0
to a perturbed state pk = 1.

One of the main assumptions about the observed sys-
tem is that its temporal dynamics eventually relaxes
into different constant states depending on the per-
formed perturbation. These states are thought to rep-
resent stable fixed points, ϕ(p), of Equation 1, where
stability arises because the real parts of the eigenvalue
of the n×n Jacobian matrix, Jij(x,p) = ∂fi(x,p)/∂xj ,
evaluated at these fixed points, x = ϕ(p), are all
negative within the experimentally accessible perturba-
tion space (no bifurcation points). This implies that
J(ϕ(p),p) is invertible, for which case the implicit func-
tion theorem states that ϕ(p) is unique and continu-
ously differentiable, and

∂ϕk
∂pl

= −
[
J−1S

]
kl
, (2)

where n × p sensitivity matrix entry, Sij =
∂fi(x,p)/∂pj , quantifies the effect of the j-th perturba-
tion type on node i. Dropping functions’ arguments is

shorthand for the evaluation at the unperturbed state,
x = ϕ(0) and p = 0.

A linear response approximation
A perturbation experiment consists of q perturbations,
each of which involves a single or a combination of per-
turbation types, represented by binary vector p. These
vectors shall form the p×q design matrix P . After each
perturbation the system is allowed sufficient time until
the newly established steady states, ϕ(p), can be mea-
sured. Let their differences to the unperturbed steady
state form the columns of the n × q global response
matrix R. The central approximation is to assume that
perturbations are sufficiently mild, such that the steady
state function becomes nearly linear within the relevant
parameter domain,

ϕk(p)− ϕk(0) ≈
p∑
l=1

∂ϕk
∂pl

pl. (3)

Replacing the partial derivative with the help of Equa-
tion 2 and writing the equation for all q perturbations
yields

R ≈ −J−1S P. (4)

Note that this equation holds exactly and independent
of perturbation strength for a linear system

ẋ = Jx+ Sp,

which can be seen by considering its steady state

x0 = J−1S p.

The crux of Equation 4 is that it relates the known
experimental design matrix, P , and the measured global
responses, R, to quantities that we wish to infer, namely
the nodes’ interaction strengths, J , and their sensitiv-
ity to perturbations, S. Thus, as a next step we shall
rewrite the equation to disentangle the known and the
unknown entries.

A dynamic system defined by rates f̃(x,p) =
W f(x,p), with any full rank n × n matrix W , has
the same steady states but different Jacobian and sen-
sitivity matrices, namely W J and W S, as the original
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Figure S1: Three perturbations (yellow squares) are performed
on a toy network (A). Network topology and perturbation tar-
gets determine the index lists from Equation 5 and Equation 6.
Here they are depicted for i = 3 (B). A graphical representa-
tion of Equation 4 demonstrates the definition of various matrix
partitions (C and D).

system, defined by Equation 1. It is thus impossible to
uniquely infer J or S from observations of the global re-
sponse alone. However, some entries in matrices J and
S might be known a priori and thus further constrain
the problem. This is the case, when e.g. certain reac-
tions rates are known. Typically however, such values
are hard to come by. Rather, we assume prior knowl-
edge about the network topology. That is, we know
the zero entries in J as they correspond to non-existent
edges. Likewise, we assume to know the targets of the
different types of perturbations which imply zero entries
in S-rows corresponding to perturbations that that are
known to not directly affect the network node associ-
ated with that row. In line with prior studies, we fix
the diagonal of the Jacobian matrix

Jii = −1.

Thus, for the i-th row of J we can define index lists µ̄i
and µ̂i, with

|µ̄i|+ |µ̂i| = n, (5)
identifying its known and unknown entries. The first
correspond to missing edges or the self loop and the
second to edges going into node i. Analogously, for the
i-th row of S we define index lists ν̄i and ν̂i, with

|ν̄i|+ |ν̂i| = p, (6)

to report its unknown and known entries. These de-
scribe the perturbations that do not target or respec-
tively target node i, see Figure S1B.

To see whether prior knowledge about J and S entries
could render other entries determinable, we first rewrite
Equation 4 as n linear equation systems

RT ji = −PTsi, i = 1, 2, . . .n, (7)

one for each column in JT and ST , denoted as ji and si.
Then, we collect the known and unknown ji-entries into

vectors j̄i and ĵi following the indexing by µ̄i and µ̂i.
In the same manner, si is split into the known vector
s̄i and unknown vector ŝi according to ν̄i and ν̂i. To
rewrite Equation 7 as a linear system of the unknown
variables, we first partition its terms into known and
unknown parts

RT ji = R̄i j̄i + R̂i ĵi and PTsi = P̄i s̄i + P̂i ŝi,

where q×|µ̄i| matrix R̄i and q×|µ̂i| matrix R̂i consist
of those columns of RT that are selected by µ̄i and µ̂i,
respectively. Analogously, q×|ν̄i| matrix P̄i and q×|ν̂i|
matrix P̂i are formed from the columns of PT selected
by ν̄i and ν̂i, respectively. These vector and matrix
partitions are illustrated in Figure S1C. Introducing
abbreviations

xi =
[
ĵi
ŝi

]
and ki =

[
R̄i P̄i

] [j̄i
s̄i

]
,

an equivalent reformulation of Equation 7 reads[
R̂i P̂i

]
xi = −ki, i = 1, 2, . . .n. (8)

The point of such algebraic acrobatics is that Equation 8
represents systems of linear equations, each in the

ui = |µ̂i|+ |ν̂i|

unknown parameters xi, compared to Equation 7 in
which the solution vector comprised unknown and
known components. It thus allows to study the iden-
tifiability of xi.

Identifiability conditions
Clearly, Equation 8 is underdetermined if

di = ui − rank(
[
R̂i P̂i

]
) > 0.

To analyse this solution space dimensionality, let n×|µ̂i|
matrix Ĵ−1

i consist of the columns of
(
J−1)T that are

selected by µi. Similarly, |ν̄i| × n matrix S̄i and ν̂i × n
matrix Ŝi shall be formed by taking rows of ST accord-
ing to indices in ν̄i and ν̂i, as shown in Figure S1D.
Also, we have Ii denote the i-dimensional identity ma-
trix and 0i,j the i× j zero-matrix. We use these defini-
tions and Equation 4 to write

R̂i = −PTST Ĵ−1
i and PTST =

[
P̂i P̄i

] [Ŝi
S̄i

]
,

and arrive at[
R̂i P̂i

]
= −

[
P̂i P̄i

]
Ψi, with (9)

Ψi =
[
ŜiĴ

−1
i I|ν̂i|

S̄iĴ
−1
i 0|ν̄i|,|ν̂i|

]
. (10)

Note that
[
P̂i P̄i

]
is nothing but a rearrangement of

the columns of PT and therefore

rank(
[
P̂i P̄i

]
) = rank(P ) = p.
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Claiming P to have rank p assumes that throughout
the experiment every type of perturbation was applied
in a non-trivial combination. This is not a limiting con-
straint as it is for example satisfied for a perturbation
scheme in which each type of perturbation is applied
once individually, which is the case for the examples
discussed here.

From
[
P̂i P̄i

]
having full (column) rank follows that

rank([R̂i P̂i]) = rank (Ψi)
= rank([ŜiĴ−1

i I|ν̂i|]) + rank([S̄iĴ−1
i 0|ν̄i|,|ν̂i|])

= |ν̂i|+ rank
(
S̄iĴ

−1
i

)
,

so that the solution subspace has dimensionality

di = |µ̂i| − rank
(
S̄iĴ

−1
i

)
. (11)

From the dimensionality of matrix product S̄iĴ−1
i we

can conclude that di ≥ max(0, n−|µ̄i|− |ν̄i|). Thus, to
fully determine xi we need to provide at least as many
elements of prior knowledge as there are nodes in the
network, which agrees with our earlier observation that
we can transform the rate equations with an arbitrary
n× n matrix without altering the steady states.

If indeed di > 0, there is a ui × di matrix Vi whose
columns form a basis of the kernel of

[
R̂i P̂i

]
, so that,

given x̃i, a specific solution to Equation 8, any

xi = Viw + x̃i, ∀w ∈ Rdi (12)

is also a solution of Equation 8. But even though the
equation system is then underdetermined, not all net-
work parameters are necessarily unidentifiable. Rather,

[xi]j identifiable ⇐⇒ eTj Vi = 0

⇐⇒ ∃w ∈ Rq :
[
R̂i P̂i

]T
w = ej ,

(13)

where ej is the j-th standard basis vector of according
length. We shall use Equation 9 to reformulate this
identifiability condition. To this end, recall the earlier
assertion about the full (column) rank of

[
P̂i P̄i

]
, from

which follows that

∀ w̃ ∈ Rp, ∃w ∈ Rq : w̃T = wT
[
P̂i P̄i

]
,

so that we can write

[xi]j identifiable ⇐⇒ ∃ w̃ ∈ Rp : w̃T Ψi = eTj .

Next, let w̃1 and w̄2 consist of the first |ν̂i| and the
last |ν̄i| components of w̃, such that w̃T = [w̃T

1 w̃T
2 ].

Accordingly, standard base vector ej is split into its first
|µ̂i| and last |ν̂i| components, eTj = [fTj gTj ]. This
allows to rewrite the previous equation as

w̃1 = gj , and

w̃T
2

(
S̄iĴ

−1
i

)
= fTj − gTj

(
ŜiĴ

−1
i

)
.

Recall that [xi]j denotes unknown interaction strengths
for j ≤ |ν̂i| ⇐⇒ gj = 0 and thus

[ĵi]j identifiable ⇐⇒ rank
([
S̄iĴ

−1
i

fTj

])
= rank(S̄iĴ−1

i )

⇐⇒ 1 + rank(S̄iĴ−1
i\j ) = rank(S̄iĴ−1

i ), (14)

where Ĵ−1
i\j is matrix Ĵ−1

i with the j-th column re-
moved. For the unknown sensitivity coefficients, where
j > |ν̂i| ⇐⇒ fj = 0, we find the identifiability condi-
tions

[ŝi]j identifiable

⇐⇒ rank
([

S̄i
Ŝji

]
Ĵ−1
i

)
= rank(S̄iĴ−1

i ), (15)

where Ŝji denotes the j-th row of matrix Ŝi.

Structural identifiability
The identifiability conditions in equations 14 and 15 re-
late the identifiability of the unknown parameters to a
discussion of the rank of matrix product S̄iĴ−1

i . The
product however depends on the unknown parameters
themselves, so that its rank cannot be directly com-
puted. Here we show that a reasonable assumption
make this possible nevertheless and allows to express
the identifiability conditions as a very intuitive maxi-
mum flow problem.

First, we rewrite the identity J−1J = In as

[J−1]kl =
∑
m6=l

[J−1]km [J ]ml − δkl,

with δkl being the Kronecker delta (recall that Jll =
−1). We can view this equation as a recurrence relation
and repeatedly replace the [J−1]km terms in the sum.
The sum contains non-vanishing terms for each edge
that leaves node l. Therefore, each replacement leads
to the next downstream node, so that eventually one
arrives at

[J−1]kl = l�k [J−1]kk, with

l�k =
∑

ω ∈Ωl→k

|ω|−1∏
m=1

[J ]ωm+1 ωm ,

where the set Ωl→k contains elements, ω, for every path
from node l to node k, each of which lists the nodes
along that path. Strictly speaking, these elements are
walks rather than paths because some nodes will ap-
pear multiple times if loops exist between l and k. With
loops, Ωl→k even contains an infinite number of walks
of unbounded lengths. But as the real part of all eigen-
values of J are assumed negative, the associated prod-
ucts of interaction strengths will eventually converge to
zero with increasing walk length. Here however, we can
safely ignore these subtleties.
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Figure S2: A maximum flow problem determines the identifiability of interaction strengths and perturbation sensitivities when
reconstructing a network from perturbation data. Here, this is illustrated for the toy model from Figure S1A. To inquire about the
identifiability of either edges going into node 3, or the sensitivity of node 3 to perturbations, we construct a flow network (A) with
unit edge and node capacities, as described in the text. We highlight in red a path carrying the maximal flow of one. While this
max-flow path is not unique, no other combination of paths could yield a larger flow. The interaction strength between a given node
and node 3 is identifiable if and only if the maximum flow is reduced after removing that node’s edge to the sink node (B). Yet here,
we can always find alternative max-flow paths that re-establish a unit-flow after removal of the according edges. Thus the respective
edges are non-identifiable. Similarly, the sensitivity of node 3 to perturbation 3 is identifiable if and only if a specific extension of the
flow network (C) does not increase the maximum flow. But here the maximum flow is indeed increased by one, which again reveals
non-identifiability. Such flow representations also provide an intuitive understanding on how alterations in the network or perturbation
setting affect identifiability. For example, it is obvious that if the toy model would not contain an edge from node 3 to 4, the edge
from 2 to 3 would become identifiable.

To simplify our notation, we want to expand the
network by considering perturbations ν̄i as additional
nodes, each with edges that are directed towards that
perturbation’s targets. Furthermore, letting the inter-
action strength associated with these new edges be given
by the appropriate entries in S we can rewrite the ma-
trix product[

S̄iĴ
−1
i

]
kl

= ν̄ik� µ̂il [J−1]µ̂il µ̂il

where µ̂il and ν̄il denote the l-th entry in µ̂i and ν̄i,
respectively. As every finite-dimensional matrix has a
rank decomposition, we can further write

S̄iĴ
−1
i = Υi Yi, (16)

where |ν̄i|× rank(S̄iĴ−1
i ) matrix Υi and rank(S̄iĴ−1

i )×
|µ̂i| matrix Yi have full rank. Finding such a decompo-
sition therefore reveals the rank of S̄iĴ−1

i . To this end,
we propose

[Υi]kn = ν̄ik�yin, and [Yi]nl = yin� µ̂il [J−1]µ̂il µ̂il
,

where yin denotes the n-th component of a certain node
set yi. In order for Equation 16 to hold, it must be pos-
sible to split each path from any perturbation ν̄il to any
node µ̂il into a section that leads from the perturbation
to a node in yi and a subsequent section that leads from
this node to µ̂il. For an extended graph that includes
an additional source node, with outgoing edges to each
perturbation in ν̄i, and an additional sink node, with
incoming edges from all nodes in µ̂i (see Figure S2A), yi
thus constitutes a vertex cut whose removal disconnects
the graph and separates the source and the sink node
into distinct connected components. Next, we want to
show that if yi is a minimum vertex cut, the rank of
S̄iĴ

−1
i equals the size of yi. Because Equation 16 is a

rank decomposition this is equivalent to showing that
the according matrices Υi and Yi have full rank. To do
so we apply Menger’s theorem [11], which states that
the minimal size of yi equals the maximum number of
vertex-disjoint paths from the source to the sink node.
This also implies that each of these vertex-disjoint paths

goes through a different node of the vertex cut yi. Re-
call that entries in Υi constitute sums over paths from
perturbation to vertex cut nodes, so that we could write

Υi = Ῡi + Υ̂i,

where Ῡi only contains the vertex-disjoint paths and
Υ̂i the sums over the remaining paths. As each of these
vertex disjoint paths ends in a different vertex cut node,
any column in Ῡi can contain no more than a single non-
zero entry. Furthermore, as a consequence of Menger’s
theorem there are exactly |yi| non-zero columns. Be-
cause these paths are indeed vertex disjoint also no row
in Ῡi has more than a single non-zero entry. Thus,
the non-zero columns are independent, showing that
Ῡi has full rank. We further assume that adding Υ̂i

does not reduce rank, which also gives Υi full rank.
In the context of biological networks there are two dif-
ferent scenarios that could lead to a violation of this
non-cancellation assumption. The first is that network
parameters are perfectly tuned to lie inside a specific
algebraic variety (a manifold in parameter space) such
that certain columns (or rows) of Υi become linearly
dependent or zero. This would for example be the case
if, for a given vertex disjoint path, there also is an al-
ternative path whose associated product of interaction
strengths has the same magnitude as that of the vertex
disjoint path but opposite sign, making their sum van-
ish. However, we consider it implausible for biological
networks to be fine-tuned to such a degree that they
could achieve such perfect self-compensation of pertur-
bations, and rule out this possibility. A more realis-
tic scenario is that network parameters are zero and
thereby lead to zero columns or rows in Υi or Yi, which
make these matrices rank deficient. In practice, such
zero-parameters can occur, for example, if a perturba-
tion is not effective on (one of) its target(s), or if robust-
ness effects [7] obstruct the propagation of the perturba-
tion signal at a certain link. But essentially, this means
that our prior knowledge about the network included
practically non-existing links or perturbation targets.
If the network topology and perturbation targets are
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correctly stated and take these effects into considera-
tion, there will be no zero-parameters and therefore the
non-cancellation assumption holds. We explore the con-
sequences of incomplete or flawed prior knowledge in
section S5.

Having shown Υi to be of full rank, the same line of
reasoning will demonstrate a full rank for matrix Yi as
well, which implies that indeed

rank(S̄iĴ−1
i ) = |yi|, (17)

where yi is a minimum vertex cut between source and
sink node. This equation has the crucial benefit that
|yi| does not depend on any unknown parameters and
can be computed as the maximum flow from source to
sink node with all nodes having unit capacity [1], as
detailed in Figure S2B. A flow is defined as a mapping
from a network edge to a positive real number that is
smaller than the edge’s capacity. Additionally, the sum
of flows entering a node must equal the sum of the flows
exiting a node, except for the source and the sink nodes.
The maximum flow problem is to attribute (permissi-
ble) flow values to all edges, such that the sum of flows
leaving the source (which is equal to the sum of flows
entering the sink) is maximal. In our case however, we
did not define edge but node capacities, meaning that
the sum of flows passing through any node must not ex-
ceed one. Yet, we can express such unit node capacities
as unit edge capacities in an extended flow network. It
is defined by replacing every node by an in- and an out-
node, where all incoming edges target the in-node, all
outgoing edges start from the out-node, and the in-node
has an edge to the out-node.

This maximum flow problem allows to express the
algebraic identifiability conditions 14 and 15 in terms
of network properties, providing an intuitive relation-
ship between network topology, perturbation targets
and identifiability. Specifically, Jiµ̂ij is identifiable if
and only if the removal of the edge from node µ̂ij to the
sink node reduces the maximum flow of the network,
see Figure S2C, and Siν̂ij

is identifiable if the maximum
flow does not increase when an additional edges con-
nects the source node with perturbation node ν̂ij , see
Figure S2D. In section S5, we simulate a perturbation
experiment to numerically verify these findings.

S2 Identifiability relationships
Network inference typically is an underdetermined
problem for which the number of measurements falls
short on the number of unknown interaction terms [4, 9],
resulting in many non-identifiable parameters. To
tackle this problem, we could construct identifiable
models by fixing certain parameters to some constant
values. Clearly, the remaining, inferred parameter val-
ues will then disagree with those that would have been
obtained from a fully-determining experiment. Never-
theless, such effective models are useful as they allow for

meaningful comparisons of the inferred parameters be-
tween perturbation experiments on similar systems, e.g.
when studying the same signalling pathway in different
cell lines [3]. To derive such a determined system re-
quires to study the relationship between non-identifiable
parameters in the sense that we ask which parameters
need to be fixed in order to render which other parame-
ters identifiable. Even though the dimensionality of the
solution space, di, is known, this question is not triv-
ial, because even groups with di or fewer parameters
might already be linearly dependent and fixing them
will therefore not effectively reduce the degrees of free-
dom of the equation system.

Take as example a case where the first two rows of ker-
nel matrix Vi from Equation 12, are linearly dependent,
that is αV 1

i = V 2
i . Then [xi]1 and [xi]2 are linearly

dependent as well, [xi]2 = V 2
i v = αV 1

i v = α [xi]1,
which implies that [xi]2 becomes identifiable if [xi]1 is
known, and vice versa, even if di > 1 (x̃i was dropped to
simplify notation). Moreover, prior knowledge on both
[xi]1 and [xi]2 would overdetermine this linear subsys-
tem and not further reduce the degrees of freedom for
the remaining unknown parameters. Examining such
parameter dependencies is a direct generalization of the
original identifiability condition in Equation 13. There,
identifiability of an unknown parameter relied on a Vi-
row being zero, that is, on a one-row submatrix being
rank deficient. Now, we inspect not only single but
groups of Vi-rows for rank deficiency. But which groups
of rows should we consider to achieve an effective de-
scription of dependency? To answer this question let us
first generalize the previous example.

We were asking if the j-th xi component becomes
identifiable if a set of other xi components is known.
With I denoting the set of indices of these other com-
ponents, let us recall Equation 12 and name their ho-
mogenous parts

x̂Ii = V j
i v and x̄Ii = V Ii v,

where V j
i is the j-th row of Vi, and V Ii the matrix that

gathers all Vi rows with indices in I. We can then put
down a formal identifiability statement

∃ I ⊆ {1, . . . ,ui} \ j, ∃ w ∈ R|I| : V j
i = wT V Ii

⇐⇒ x̂Ii = wT V Ii v = wT x̄Ii .
(18)

In other words, if the j-th Vi-row lies within the row-
space of the set of Vi-rows with indices I, the j-th un-
known parameter can be expressed as a linear combina-
tion of the set of parameters with indices I. This means
that knowledge of the set of parameters with indices I
then implies identifiability of the j-th parameter. How-
ever, this statement does not imply the uniqueness of
I. On the contrary, if the j-th Vi-row lies within the
I-associated rowspace, it will also do so if additional Vi
rows are added to the set. Similarly, there could be a
linearly dependent subset of Vi-rows that all lie within
the I associated row-space. This would allow for multi-
ple row-combinations to span the I-associated rowspace
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and thus implicate the identifiability statement. Both
cases show, that various combinations of additionally
fixed parameters can imply the identifiability of a cer-
tain other parameter.

A comprehensive description of this combinatorial
space arises from a mathematical structure that has
been termed matroid [16]. Matroids are a general-
ized description of linear independence in vector spaces.
Here we are concerned with representable matroids,
which are those that specify linear (in-)dependence of
any combination of columns of a matrix. Amongst their
various equivalent definitions, the one that relates di-
rectly to our problem is the definition in terms of cyclic
flats (also called circuit closures) and their ranks [13].
To specify these we need to define a few terms. First,
let E be the ground set of matroid M, that is, the set
of indices enumerating the columns of the associated
matrix. Furthermore, define a circuit as a dependent
set (of columns) whose proper subsets are all indepen-
dent. The set of circuits can be enumerated with an
incremental polynomial-time algorithm [2]. Finally, we
define a flat as a subset of E , with the associated sub-
matrix having rank r, such the addition of any other
element to the set would increase the rank. With this
we can define Cr, a cyclic flat of rank r, as a flat that is
the union of a set of circuits with rank r. We show in
the next section how to obtain cyclic flats from circuits
and vice versa.

Let us now consider Mi, the matroid whose ground-
set εi covers the ui columns of (Vi)T . Each element in εi
is thus associated with an unknown parameter. The key
inside is thatMi’s set of circuits fully characterizes the
identifiability relationships between the non-identifiable
parameters. This is because the circuit dependency im-
plies that any parameter represented by a given circuit
element is identifiable when the remaining circuit ele-
ments are known. Additionally, this set of remaining
parameters is guaranteed to be minimal because they
are linearly independent. The enumeration of the cir-
cuits with the aforementioned algorithm requires a de-
pendence oracle that indicates whether a column subset
is dependent or not. For this, we first consider another
matroid M′i, which is associated with the ui columns
of Ψi, as defined in Equation 10. Because Vi spans the
kernel of matrix Ψi,M′i is dual toMi [16]. This impli-
cates that the rank of the (Vi)T column-subset I relates
to that of the complementary columns Ĩ = εi \ I of Ψi

as follows

rankMi
(I) = rankM′

i
(Ĩ) + |I| − (ui − di).

To investigate the dual rank, we note that we can estab-
lish the column subset of Ψi by a right multiplication
with the ui × |Ĩ| matrix P, which is an identity matrix
where columns that correspond to missing indices in Ĩ
are removed. Furthermore, we subdivide elements in Ĩ
into sets Ĩ1 and Ĩ2 based on whether they are less than
or equal to |µ̂i| or not, which allows to define matrices

BA

1

2

3

4 5 6

1

2 3 :

:

Figure S3: In this toy network (A), nodes 4 and 5 are asso-
ciated with non-identifiable parameters. These can take values
from certain linear sub-spaces whose hierarchy is represented by
the lattices of cyclic flats of rank r (B). Each cyclic flat consists of
the annotated elements in addition to elements from its preceding
cyclic flats. To achieve identifiability requires to set certain pa-
rameters to a constant value. A preference to which parameters
this should be is represented here as a ranked list (arrow indi-
cates direction of increasing preference). The matroid formalism
identifies the smallest and most preferred set of parameters that,
when set to a constant value, render the network model fully
identifiable. Here these are marked by red stars.

P1 and P2 by the partitioning

P =
[
P1 0|µ̂i|,|Ĩ2|

0|ν̂i|,|Ĩ1| P2

]
. (19)

Then,

rankM′
i
(Ĩ) = rank(Ψi P)

= rank
([

ŜiĴ
−1
i P1 P2

S̄iĴ
−1
i P1 0|ν̄i|,|Ĩ2|

])

= |Ĩ2|+ rank
([
P̃T2 Ŝi
S̄i

]
Ĵ−1
i P1

)
, (20)

where P̃2 is the identity matrix without the columns
that appear in P2. Left-multiplication by P̃T2 thus se-
lects rows that correspond to missing indices in Ĩ2. The
crucial point of this calculation is that we arrived at
a matrix product that has the same form as the one
discussed in the previous section. Therefore, the dual
rank can be evaluated independently of the unknown
entries in J and S because the last term in the previous
equation equals to the maximum flow through the as-
sociated network, with connections from the source and
to the sink nodes that are chosen according to Ĩ, as
shown. This allows to construct the oracle and identify
the set of circuits. Therefore the identifiability relation-
ships between unknown parameters can be inferred from
information about network topology and perturbation
targets alone.

Instead of listing the set of circuits, we propose cyclic
flats as an equivalent but more concise representation of
the identifiability relationships. They form a geometric
lattice when ordered by inclusion (a cyclic flat precedes
another if it is its proper subset) and can thus be graph-
ically represented as a compact hierarchical structure.
We demonstrate this for the example network shown in
Figure S3. The depicted lattice makes the identifiability
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relationships evident. All elements of a cyclic flat with
rank r become identifiable if at least r independent flat
elements are fixed. A set of elements is independent if
fixing any combination if its elements does not render
any of its other element identifiable. Let us clarify this
at an example where we are interested in determining
the parameters that need to be fixed in order to make
J43 identifiable. Following the previous rules, Figure S3
reveals that this could be achieved by fixing either S41
alone, or the parameter pairs J45 ∪ S43 or J41 ∪ S42. In
the latter two cases S53 would become identifiable as
well.

When the goal is to achieve a fully identifiable net-
work model, as discussed before, there typically are
preferences as to which non-identifiable parameters
should be fixed. For example, if there is noisy ex-
ternal data on parameter values we would rather fix
those parameters values in which we have high confi-
dence. Or, if we are to construct the aforementioned
effective signalling models for the comparison of differ-
ent cell lines, we would want to fix those parameters,
which we expect to be equal between different cell lines
and infer those parameters for which cell line differ-
ences are expected [3]. Thus, in these scenarios fixing of
each parameter is associated with a certain preference
(weight) and our goal is to find a minimum number of
parameters that need to be fixed such that their sum of
weights is maximal. In fact, matroids owe their striking
appearance in combinatorial optimization because this
problem is solvable with the Greedy Algorithm [12, 8]:
Amongst the set of non-identifiable parameters in εi,
sequentially select the parameters with highest weight,
that have not yet become identifiable from fixing the
so-far selected set. Thus, instead of providing numer-
ical weights for unknown parameters it is sufficient to
rank them. We depict examples of such ordered lists
in Figure S3 and show the resulting fully identifiable
maximum-weight-model.

Circuits and circuit closures

As both, the set of circuits and the circuit closures
combined with their ranks, are an equivalent definition
of a matroid they imply each other. Recall that circuits
that contain a given network parameter describe the
minimal sets of network parameters that need to be
fixed to render that parameter identifiable. The flat of
closures conveniently display these circuits as follows.
By definition, any circuit is a r + 1-element subset, S,
of some cyclic flat Cr with rank r. Thus, to obtain all
circuits containing a certain parameter, consider all
such subsets of cyclic flats that include this parameter.
Yet S is only a circuit if none of its subsets S ⊂ S
is dependent, in which case there is another circuit
C ⊆ S. Since the lattice of cyclic flats is ordered by
inclusion, C is a subset of a cyclic flat that precedes Cr
in the lattice. Therefore, S is only a circuit if no cyclic
flat preceding to Cr contains a circuit that is a proper

subset of S.

We mentioned that circuits can be enumerated in in-
cremental polynomial-time [2]. In a next step, we gen-
erated circuit closures from the set of circuits. To this
end, we first order circuits by size and iterate through
that list. For each circuit of a given rank we identify
circuits of up to its size whose intersection is equal or
larger to its rank. Their union forms a circuit clo-
sure. Next, one continues the circuit iteration while
skipping circuits that have already been assigned to a
circuit closure. Eventually, this generates the entire en-
semble of circuit closures. Find an implementation in
the function circuits2cyclic flats which is part of
the identifiability module of the IdentiFlow pack-
age available at github.com/GrossTor/IdentiFlow.

S3 Experimental Design
Next, we describe the algorithmic implementation of the
experimental design strategies.

Depth-first search in strategy graph
The power set of the set of perturbations ordered by in-
clusion forms a directed graph (more formally a graded
poset), where ancestors are proper subsets with one less
element (e.g. {P1, P2}, {P1, P3}, and {P2, P3} are
all ancestors of {P1, P2, P3}). Any perturbation se-
quences can thus be represented as a path on this graph,
starting from the empty subset. Different experimen-
tal design strategies remove different subsets of edges,
which yields what we want to call the strategy graph.
Therefore strategies are associated with different sub-
sets of (or even just single) sequences. To enumerate
all strategy-associated perturbation sequences, we im-
plemented a recursive depth-first search on the strategy
graph:

1: procedure dfs({S})
2: S+ ← next perts({S})
3: for {S} ∈ S+ do
4: fully identifiable ← max flow({S})
5: if not fully identifiable then
6: dfs({S})
7: else
8: save S
9: end if

10: end for
11: end procedure
Here, S denotes a perturbation sequence and {S} the
set of perturbations in the sequence. To enumerate
perturbation sequences, the DFS procedure is called
with the empty set. It then parses the strategy graph
and adds perturbations to the sequence sequentially.
The strategy graph is built up dynamically in line 2
by the NEXT PERTS({S}) function, as it returns S+,
the set of descendants of {S}. We will define it for the
different strategies further below. Every descendant
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(line 3) will instantiate a new instance of the DFS
procedure (line 6), which will in turn continue parsing
the graph, unless the descendent is either the maximal
perturbation set, or a set of perturbations that fully
determines the network. In this case, additional per-
turbations provide no additional network information,
so that the search can be aborted and a strategy-
associated sequence is found (and therefore saved in
line 8). To query for network identifiability (line 4),
we employ the maximum flow approach described in
the previous sections. Note that, to enumerate all
sequences the depth-first search does not terminate
when it reaches a perturbation set that has previously
been encountered. To avoid redundant computational
effort, the calls to NEXT PERT and MAX FLOW are
stored (Memoization). Strictly speaking, this violates
the definition of a depth-first search. Nonetheless, we
want to keep the terminology due to our procedure’s
apparent analogy.

Let {S̄} denote the set of all perturbations that are
not in {S}, and let Ŝ denote all proper supersets of {S}
with size |{S}| + 1. That is, Ŝ contains all perturba-
tion sets that we can obtain by adding one element from
{S̄} to {S}. As mentioned before, NEXT PERT({S})
returns a strategy-dependent subset of Ŝ. For the ex-
haustive strategy a call to NEXT PERT({S}) simply
returns Ŝ itself. Therefore, in this case the strat-
egy graph coincides with the original power set inclu-
sion graph and DFS({∅}) will store all perturbation
sequences. The random strategy works similarly ex-
cept that only a single perturbation set is chosen ran-
domly from Ŝ. Thereby, DFS({∅}) will return a sin-
gle random perturbation sequence. The naive strat-
egy considers the perturbed nodes for each perturbation
and computes the number of network nodes to which
these are connected to by a path. It then selects the
perturbations in {S̄} that maximize this number and
NEXT PERT({S}) returns the according subset from
Ŝ. In contrast, the single-target strategy selects the
next perturbation candidates based on whether they
efficiently reduce the degrees of freedom of the net-
work. More specifically, the maximum-flow approach
is applied (and memoized) for every perturbation set
in Ŝ. Amongst them, NEXT PERT({S}) returns those
that first maximize the number of identifiable interac-
tion strengths and second minimize the sum of solution
space dimensionalities,

∑
di, as defined in Equation 11.

Finally, the multi-target strategy is equivalent to the
single-target strategy, except that it expands the set
of possible perturbations by allowing for any combina-
tion of perturbations. For example, if originally there
is a perturbation targeting each single node of the net-
work, the multi-target approach would allow to pool
perturbations such that there are single perturbations
to target any set of nodes. Clearly, considering the en-
tire power set of perturbation combinations makes such
an approach feasible only for less than ten (original)

perturbations (see a discussion on computational com-
plexity further below). Therefore, we also also imple-
mented a more efficient, hierarchical multi-target strat-
egy, which was also the one applied in the analysis of
the KEGG pathways (see next section and main text).
Here, the considered set of perturbation combinations is
built-up in a step-wise manner. First, we only consider
single and pair perturbations (of elements in {S}). Out
of these, we perform a selection as in the single-target
strategy. If a pair perturbation was within the selection,
we also consider all combinations of three perturbations
for the selection procedure. This continues until no per-
turbation combination of largest size is in the selection
or the entire power set of {S} is considered.

Analogous to the random strategy that makes a ran-
dom choice amongst the candidate perturbations of
the exhaustive strategy, we implemented the option to
randomly pick a single perturbation set amongst the
possible candidates also for the naive, the single- and
multi-target strategies. Thus, a run of DFS({∅}) will
then select a single perturbation sequence. Repeated
calls to DFS({∅}) will thus generate random samples
amongst the set of perturbation sequences that are as-
sociated with the chosen strategy. This sampling pro-
cedure becomes essential if the number of perturbations
and strategy associated sequences becomes too large
to make a complete depth-first search computationally
tractable. Let us thus briefly characterize the computa-
tion complexity of the experimental design strategies.

Computational complexity of experimen-
tal design strategies

The computational complexity of the depth-first search
is dominated by the calls to the MAX FLOW routine.
We therefore want to count how many times it gets
called by different strategies. As the parsing of the
strategy graph stops whenever a fully determining per-
turbation set is reached, this number is not just a func-
tion of network size (n) and number of perturbations
(p), but will crucially depend on the specific network
topology and perturbation targets. To still provide
a rough estimate for an upper complexity bound, we
will disregard such early stopping. Due to memoiza-
tion, MAX FLOW will not be called repeatedly if a cer-
tain perturbation set is revisited during the depth-first
search. Thus, its number of calls equals to the number
of different perturbation sets that were parsed during
the depth-first search. For the exhaustive strategy this
will be all 2p nodes. For all other strategies besides the
random strategy, this number will again be highly sensi-
tive to the specific perturbation network so that we can-
not make any general statements. Thus, we want to con-
sider the case where we randomly sample a single strat-
egy associated sequence, as described before. Then the
naive and random strategies will parse p perturbation
sets (where for each perturbation set the naive strat-
egy has the additional overhead of computing the most
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Figure S4: Computational running times to compute pertur-
bation sequences on KEGG pathways with different experimen-
tal design strategies. Lines go through mean wall times over all
KEGG pathways of the same size in the upper graph and all
KEGG pathways that require the same number of perturbations
for full identifiability in the lower graph.

upstream perturbations as described above). For every
perturbation set {S} that is parsed by the single-target
strategy, NEXT PERT({S}) will call MAX FLOW for
every descendant of {S} in the strategy graph. Due
to memoization, this yields

∑p
i (p − i) ∝ p2 calls. The

number of MAX FLOW calls used by the (hierarchical)
multi-target strategy is again highly dependent on the
specific perturbation network. But at least, this strat-
egy will additionally consider all pair perturbations and
thus yield more than

∑p
i (p + p (p−1)/2− i) ∝ p3 calls.

Finally, we also require an estimate for the complexity
of MAX FLOW({S}). Also here, the flow network as
defined in previous sections varies with network topol-
ogy and perturbation targets and so does the computa-
tional effort to compute maximum flow. We will thus
make some estimations based on the assumption that
biological networks are rather sparse, with a number
of edges that is roughly proportional to the number of
nodes and that perturbations tend to be specific to a few
nodes. Thus for the unit edge capacity flow network (re-
call the definition in the Methods of the main text), we
assume for the number of edges, E ≈ n + n + p +O(1)
(≈ edges in original network + edges between in- and
out-nodes + source edges + sink edges). Due to the con-

version in in- and out-nodes, a flow network hasN = 2 n
nodes. As noted in the main text, algorithms are known
to find maximal flows in unit capacity networks with
O(min(N2/3E, E3/2) computations [1]. However, in
the IdentiFlow package, we implemented the well es-
tablished Edmonds-Karp algorithm which has a com-
plexity of O(N E2). To determine the identifiability
of the entire networks requires to solve n maximum-
flow problems. Thus, we can estimate the computa-
tional complexity of a call to MAX FLOW({S}) with
O(n4 + n2p2). Overall, this gives the following upper
bounds for the complexity of the experimental design
computations

strategy complexity
random / naive O(n4p + n2p3)

single-target O(n4p2 + n2p4)
multi-target O(n4p3 + n2p5)
exhaustive O(n42p)

In practice, the computational effort is often much
lower than these theoretical bounds suggest. To this
end, we measured computational running times that
were needed to determine the experimental designs for
a collection of KEGG pathways (for more details see
next section). Figure S4 shows the according wall times,
where each perturbation sequence was computed on a
single core with 2.3 Ghz. Note that network size and
the number of perturbations that is required for full
identifiability are not independent of each other (see
Figure S6).

S4 Perturbation experiments for
KEGG pathways

KEGG data [10] was retrieved using the KEGG API.
We retrieved KGML files for human pathways and
from them build network representations based on their
’relation elements’. For each such representation we
computed the size of its largest connected component.
The pathway was filtered out if it was smaller than
five.

The performance of the exhaustive strategy could be
observed for small pathways Figure S5 A. In addition,
we further confirmed our hypothesis that the isolation
score is predictive with respect to the performance of the
design strategies Figure S5 B. Furthermore, Figure S6
compares for each KEGG pathway the number of per-
turbations that are required to achieve a fully identi-
fiable network using the different strategies. We also
studied how our experimental design strategies com-
pared against a strategy that chooses random sequence
of combination perturbations. Thus, for each KEGG
pathway, we generated perturbation sequences by se-
quentially drawing perturbation combinations from the
power set of single perturbations (excluding the empty
set) and measured their performance, shown in Fig-
ure S7 (annotated as multi-random). The multi-random
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Figure S7: Identifiability AUC, defined as area under the num-
ber of identified nodes vs. number of perturbation curve, see
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bations required for full identifiability is shown relative to the
average number required for a random strategy (bottom figure).
Same data as in main text Figure 4 A and B with additional
multi-random strategy.

strategy is approximately en par with the naive strat-
egy but is outperformed by the single- and multi-target
strategies.

S5 Verification by numerical
simulation

To verify our analytical description of identifiability of
network parameters, we numerically simulated the per-
turbation experiment depicted in Figure S3A. This was
done by allocating random numbers to each network pa-
rameter, where all random numbers were drawn from
a standard normal distribution. We then computed
steady state responses to perturbations, R, according
to Equation 4 (with P = Ip). From this synthetic data,
we infer the original network parameters by solving the
following least squares problem

min
J,S

n∑
i

p∑
j

(
Rij −

[
J−1S

]
ij

)2
,

where only the unknown parameters in J and S are al-
lowed to vary. To this end, we employ the least-squares
solver from the SciPy library [15]. We repeated the
procedure for 50 different sets of random network pa-
rameters. For each of these synthetic perturbation ex-
periments, we perform the fitting with 50 different ini-
tial conditions generated by Latin Hypercube sampling
within the interval -1 to 1. The absolute differences
between the fitted and the original parameters are de-
picted in Figure S8A.

Each parameter that is declared identifiable by the
maximum flow approach (see Figure S3A) shows indeed
a near zero deviation. Whereas all non-identifiable pa-
rameters show considerable deviations. This confirms
our analytical findings. It also shows that the numer-
ical simulations are generally unreliable, as we observe
many non-zero deviations for identifiable parameters
and near-zero deviations for non-identifiable parame-
ters. An identifiability analysis through numerical sim-
ulation thus relies on many repetitions and arbitrary
thresholds, which also makes it computationally expen-
sive and therefore inept for experimental design espe-
cially for larger systems.

Furthermore, we analysed the fit’s sensitivity to
noise. Random numbers drawn from normal distribu-
tions with zero mean and different standard deviations
(Noise levels in Figure S8B) were added to each entry
in the simulated R. The same fitting procedure was
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Figure S8: Absolute differences between inferred and original
network parameters for the synthetic perturbation experiments
depicted in Figure S3A. Shown are distributions over 50 ran-
dom original parameter sets and 50 initial fitting conditions each.
Network parameters that were declared non-identifiable by the
maximum-flow approach are annotated in red. A Deviations for
all network parameters in the absence of noise. Only identifiable
parameters (according to maximum-flow approach, compare Fig-
ure S3A) have nearly zero deviations. B Deviations of identifiable
network parameters with different levels of noise in the synthetic
response data.

carried out for such noisy response data and the results
are shown in Figure S8B (only identifiable parameters
are shown). We observe that the median inference
error for each parameter is approximately equal to the
(additive) noise level. In individual fits however, some
inferred parameters can drastically differ from their
original counterpart. Yet, the fitting procedure is not
the focus of this article and we refer to the reader to
other references that aim to improve the robustness to
noise [14, 5].

Numerical simulations also allow to investigate how
the identifiability of network parameters is altered when
assumptions in the maximum-flow approach are bro-
ken. For this purpose, we simulate saturation effects

by setting some of the original network parameters to
zero without considering them as known parameters.
Therefore the identifiability analysis by the maximum-
flow approach remains unchanged. However Figure S9
shows that indeed some previously identifiable parame-
ters become non-identifiable and vice versa in such satu-
ration setting. In detail, we performed noise-free numer-
ical simulations of the perturbation experiment outlined
in Figure S3A as before. However in Figure S9A and
Figure S9B, we considered the possibilities that multi-
target perturbation 3 is not effective with respect to
either of its targets. Interestingly, Figure S9A shows
that an ineffective perturbation of node 4 does not alter
identifiability, including the fact that it remains impos-
sible to infer from the response data that the sensitivity
of node 4 to perturbation 3 is in fact zero. On the other
hand, a zero sensitivity of node 5 to perturbation 4 is,
contrary to the maximum-flow results, actually identi-
fiable, as shown in Figure S9B (which is rather trivial
as perturbation 3 no longer causes a response at node
5). However, this comes at the cost of losing identifia-
bility of the interaction strength from node 5 to node 6.
Similarly, we explored the loss of connectivity between
nodes. Again, in our examples, we observed qualita-
tively different possibilities. While a vanishing interac-
tion strength from node 2 to node 4 does not alter the
identifiability of any network parameters (Figure S9C),
we observe that the previously non-identifiable interac-
tion strength from node 3 to node 4 becomes identifiable
when it is set to zero (Figure S9D).
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Figure S9: Absolute differences between inferred and original parameters for the same setting as in Figure S8, except that the
parameters denoted in the titles of each subfigure are set to zero when simulating the response data. Again, network parameters that
were declared non-identifiable by the maximum-flow approach are annotated in red.
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