

Supplementary Materials: Development and Evaluation of Matrices Composed of β-cyclodextrin and Biodegradable Polyesters in the Controlled Delivery of Pindolol

Agnieszka Lis-Cieplak, Filip Charuk, Marcin Sobczak, Anna Zgadzaj, Agata Drobniewska, Łukasz Szeleszczuk and Ewa Oledzka

Figure S1. ¹³C NMR spectrum of the β-CD/PCL100 polymer in DMSO-d₆.

Figure S2. HSQC spectrum of the β-CD/PCL100 polymer in DMSO-d₆.

Figure S3. ROESY spectrum of the β -CD/PLA50 polymer in DMSO-d₆, marked ROE cross-peaks between H-2 protons of β -CD and the first mer unit of PLA. Circled area is shown enlarged on the next figure.

Figure S4. Selected region of ROESY spectrum of the β -CD/PLA50 polymer in DMSO-d₆, the plot shows ROE cross-peaks between protons inside the glucose unit of β -CD, and between H-2 and H-5 protons of β -CD and the first mer unit of PLA (signal a').

Figure S5. The SEC elution curve of the β-CD/PCL100 polymer sample.

Figure S6. MALDI-TOF MS spectrum of the β-CD/PCL100 polymer obtained at 140 °C.

Figure S7. MALDI-TOF MS spectrum of the β-CD/PLA100 polymer obtained at 140 °C.

Figure S8. Monosubstituted (at the OH-2 position) β -CD/PCL, DP = 20, DS = 1.

Figure S9. Monosubstituted (at the OH-2 position) β -CD/PCL, DP = 5, DS = 4.

Figure S11. ¹H NMR spectrum of the β-CD/PLA100/PDL conjugate in DMSO-d₆.