Stains and plasmids	Genotype or relevant characteristics	Source
Strains		
UA159	Wild type	Laboratory
		stock
ΔlrgAB	$\Delta lrgAB::\Omega Km^{r}$	(29)
Δpta	Δ <i>pta</i> ::NPKm ^r	(39)
$\Delta ackA$	ΔackA::NPKm ^r	(38)
$\Delta pta\Delta ackA$	Δ <i>pta</i> ::NPEm ^r /ΔackA::NPKm ^r	(38)
KB12	Δ <i>pta</i> carrying pDL278:: <i>pta</i> (<i>pta</i> -complemented strain)	(39)
KB034	∆ackA carrying pDL278::ackA (ackA-complemented strain)	(38)
UA159/PlrgA-gfp	UA159 carrying <i>gfp</i> gene fusion to <i>lrgA</i> promoter	(30)
UA159/pDL278	UA159 carrying pDL278	(30)
∆lrgAB/PlrgA-gfp	Δ <i>lrgAB</i> carrying <i>gfp</i> gene fusion to <i>lrgA</i> promoter	This study
$\Delta lrgAB/pDL278$	$\Delta lrgAB$ carrying pDL278	This study
∆pta/PlrgA-gfp	Δpta carrying <i>gfp</i> gene fusion to <i>lrgA</i> promoter	This study
∆pta/pDL278	Δpta carrying pDL278	This study
∆ackA/PlrgA-gfp	$\Delta ackA$ carrying <i>gfp</i> gene fusion to <i>lrgA</i> promoter	This study
∆ackA/pDL278	$\Delta ackA$ carrying pDL278	This study
∆pta∆ackA/PlrgA-gfp	$\Delta pta\Delta ackA$ carrying <i>gfp</i> gene fusion to <i>lrgA</i> promoter	This study
∆pta∆ackA/pDL278	$\Delta pta\Delta ackA$ carrying pDL278	This study
וי ות		
Plasmids		
pDL278	<i>E. coli-Streptococcus</i> shuttle vector, Spr	(36)
pDL278::PlrgA-gfp	pDL278 carrying <i>gfp</i> gene fusion to <i>lrgA</i> promoter	(30)

Table S1. Bacterial strains and plasmids used in this study.

Em^r, erythromycin resistant cassette; Km^r, kanamycin resistant cassette; Sp^r, spectinomycin resistant cassette; NP, nonpolar; Ω , polar.

Figure S1. Change of *PlrgA* activity during growth of wild type and $\Delta lrgAB$ mutant strains in FMC3 medium with or without 1 mM exogenous pyruvate

Figure S2. Change of *PlrgA* activity during growth of wild type and $\Delta lrgAB$ mutant strains in FMC11 medium.

Figure S3. Changes of *PlrgA* activity during growth in TV medium containing low concentrations of glucose in the $\Delta lrgAB$ background.

Figure S4. The response of *PlrgA* activity to 1 mM pyruvate in FMC 11 medium by disruption of the Pta-AckA pathway.

Figure S5. The effect of exogenously added pyruvate on the stationary phase of *S. mutans* UA159 wild type, Δpta and $\Delta ackA$ strains, grown in FMC11 and TV3.