

Supplemental Fig. S1

Supplemental Figure S1. Tnfsf13b (BAFF) reporter mice expressing RFP, Baff^{fl/fl} mice, and verification of conditional KO mice. A. Schematic of the two-construct approach used to generate a KOMP-style allele to conditionally knock-out the *Tnfsf13b/Baff* gene. The *Tnfsf13b*-5' construct included a Genetrap Cassette expressing the TagRFPT) red fluorescence protein (RFP), under the control of an internal ribosome entry site (IRES) and flanked by frt sites for selective deletion, a loxP site and arms of homology of ~5kb each. The Tnfsf13b-5' construct was inserted between exons 2 and 3 of *Tnfsf13b* gene. Neomycin (*Neo*) and Diphtheria Toxin A (DTA) elements for positive and negative selection are indicated. The *Tnfsf13b*-3' construct was inserted after the last exon 7 in the intergenic region, and included the other loxP site, arms of homology (~5kb each), a Puromycin (Puro) and a DTA element. The Tnfsf13b-3' construct was electroporated first into ES cells, and a positive clone electroporated with the Tnfsf13b-5' construct. Homologous recombination of the two constructs generated the heterozygous BAFF-IRES-RFP (BAFF-RFP) reporter mice where *Tnfsf13b* is functionally knocked-out and the reporter expresses the IRES-RFP under *Tnfsf13b* promoter and the loxP sites between exon 3 and 7. The germline BAFF-RFP+/- mice were bred with B6N(B6J)-Tg(CAG-Flpo) mice to excise the Genetrap Cassette and Neo, and then with B6;129-Tg(CAG-dre) mice to remove Puro. The Flpo and Dre recombinases were bred out to generate *Baff^{fl/fl}* mice expressing wild type *Baff* with floxed exons 3-7. **B**, Schematic diagram of BAFF-IRES-RFP (BAFF-RFP) and *Baff*^{fl/fl} alleles. C, D, Splenocytes harvested from $Baff^{1/fl}$ (C, D), $Baff^{1/fl} Mrp 8^{Cre}$ mice (C), or $Baff^{1/fl} zDC^{Cre}$ mice (D), enriched with CD11b⁺ CD11c⁺ magnetic bead positive selection, sorted on a FACS Aria cell sorter and assessed for *Baff* mRNA by qPCR. C, D, Data show means \pm SEM of relative *Baff* mRNA from one experiment pooling cells from six mice/group (C), or from one representative of two experiments pooling cells from six-seven mice/group (\mathbf{D}) . Selective depletion of BAFF in Nphs from *Baff^{l/fl} Mrp8^{Cre}* mice was confirmed with sorted BM cells. C, D, Sorted cells from $Mrp8^{Cre}$ mice and zDC^{Cre} mice showed similar Baff mRNA levels as Baff^{fl/fl} mice (not shown). C, D, Statistics were determined with two-tailed unpaired Student's t-test, * p<0.05, ** p<0.01. E, Baff^{fl/fl} mice crossed with $Cx3cr1^{Cre}$ mice (1) to generate $Baff^{1/fl} Cx3cr1^{Cre}$ mice. Baff mRNA in sorted splenic MOs from *Baff^{1/fl} Cx3cr1^{Cre}* mice was lower than in control MOs, confirming that BAFF was

knocked down just in the appropriate subset. $Baff^{fl/fl}$ mice and $Baff^{fl/fl} Cx3cr1^{Cre}$ mice were immunized i.p. with 20 µg of NP-Ficoll, bled at the indicated time points, NPspecific IgG3 was analyzed by ELISA. Data show means ± SEM of NP-IgG3 and are from one experiment; $Baff^{fl/fl}$, N=8; $Baff^{fl/fl} Cx3cr1^{Cre}$, N=6. Statistics were performed with 2-way ANOVA with Tukey's multiple comparison test.

 Yona, S., K.-W. Kim, Y. Wolf, A. Mildner, D. Varol, M. Breker, D. Strauss-Ayali, S. Viukov, M. Guilliams, A. Misharin, D. A. Hume, H. Perlman, B. Malissen, E. Zelzer, and S. Jung. 2013. Fate Mapping Reveals Origins and Dynamics of Monocytes and Tissue Macrophages under Homeostasis. *Immunity* 38: 79–91.

Supplemental Fig. S2

A Gating strategy for myeloid cell populations in Spleen

B Gating strategy for myeloid cell populations in BM

Supplemental Figure S2. Analyses of myeloid cells and B cells in spleens and BMs from WT, BAFF-RFP^{+/-} and BAFF-RFP^{+/+} mice. Gating strategy to identify myeloid cell populations in WT splenic (A) and BM cells (B). Debris, doublets and nonviable cells were excluded. A, splenic B cells (CD19⁺CD3⁻) and T cells (CD19⁻CD3⁺) were defined first; in non-B cells and non-T cells (CD19⁻CD3⁻ gate) populations were defined as follows: NK cells, NK1.1⁺CD11b^{+/-}; neutrophils (Nphs), CD11b^{hi}Ly6G^{hi}Ly6C^{int}SSC^{int-}NK1.1⁻; Ly6C^{hi} monocytes (Ly6C^{hi} MOs), CD11b^{hi}Ly6C^{hi}CD11c⁻SSC⁻Ly6G⁻NK1.1⁻; Ly6C^{hi} dendritic cells (Ly6C^{hi} DCs). CD11b^{hi}Lv6C^{hi}CD11c^{hi}SSC⁻Lv6G⁻NK1.1⁻; Lv6C^{lo}MOs, CD11b^{int}CD11c⁻Lv6C^{lo}SSC⁻ Ly6G⁻NK1.1; plasmacytoid DCs (pDCs), SiglecH⁺CD11b⁻CD11c^{lo}B220⁺Ly6G⁻NK1.1; CD8⁺ cDCs, CD11c^{hi}CD8⁺B220⁻Ly6G⁻NK1.1⁻; CD8⁻ cDCs, CD11c^{hi}CD8⁻B220⁻Ly6G⁻ NK1.1⁻. **B**, For the CD11b⁺B220⁻CD19⁻ gate, BM cells are shown from mice treated or not for 24 h with Poly(I:C). BM NK cells (NK1.1⁺SiglecH⁻) and pDCs (NK1.1⁻SiglecH⁺) were defined and then gated out. In the NK1.1 SiglecH⁻ gate CD11b⁺ gated myeloid populations were defined as follows: neutrophils (Nphs), CD11b⁺Ly6G^{hi}Ly6C^{int}SSC^{int-}; **CD11b⁺ B cells**, B220⁺CD19⁺CD11b⁺Ly6G⁻SSC⁻. In the **CD11b⁺B220⁻CD19⁻Ly6G⁻** SSC⁻ gate we identified 5 populations of myeloid cells and precursors defined as follows (See also Table S1): CD11b⁺ myeloid precursors, Ly6C⁻CD11c⁻CD115⁻CX3CR1⁻ CCR2⁻MHCII⁻; Nph precursors, Lv6C^{int}CD11c⁻CD115⁻CX3CR1⁻CCR2⁻MHCII⁻; Ly6C^{hi} MOs, CD11c⁻CD115⁺CX3CR1⁺CCR2^{hi} MHCII⁻; preDCs, CD11c⁺Ly6C⁻CD115⁺ CX3CR1^{hi} CCR2⁺ MHCII⁺. After treatment with Poly(I:C) a BM Ly6C^{hi} DC/Mph precursor (CD11c⁺CD115^{hi}CX3CR1^{hi}CCR2^{hi}MHCII⁺) was substantially upregulated. In the NK1.1-SiglecH⁻CD11b⁻ gate, B cell precursors were defined as described in Methods. C, D, B cell populations from naïve WT mice, BAFF-RFP^{+/-} mice and BAFF-RFP^{+/+} mice. C, representative plots of B220⁺ CD43⁻ (PreB NFB MatB) cells include preB cells, NF B cells, and mature B cells (*left panels*), and CD11b⁺ B cells (*right panels*). **D** graphs show means \pm SEM of cell numbers. Data are from one of two independent experiments performed with three mice per group. Statistics were performed by one-way ANOVA corrected with Holm-Sidak method for multiple comparisons; * p < 0.05, ** p < 0.01, *** *p*<0.001.

Supplemental Fig. S3

* 0

Ly6Chi CD11c+

C

Ly6Chi MO

% 0-

CD11b+ B cell

10 % 0 Ly6Chi CD11c+ Ly6Chi MO

10 % 0 CD11b+ B cell

Supplemental Figure S3. BAFF-RFP in B cell and and T cell subsets, BAFF⁺ CD11b^{hi} NK cell phenotypes and requirement for MAVS for BAFF up-regulation in BM myeloid and B cell subsets by Poly(I:C). A and B, BAFF-RFP expression detected by flow cytometry in splenic B cell subsets (A) and T cell subsets (B) from naïve BAFF-RFP^{+/-} mice. RFP background control in WT (C57BL/6) mice is also shown. A and B, BAFF-RFP levels are shown as histograms on the left, BAFF-RFP^{+/-} mice (*black empty* histograms), WT mice (grey filled histograms); and on the right as dot plots. Data show one representative of more than three experiments. For gating strategy of B cell subsets and T cell subsets see Methods. C. Phenotype of NK CD11b^{int/-} cells and NK CD11b^{hi} cells upregulated in spleen after Poly(I:C) i.p. injection. NK cell subset phenotypes: CD11b^{int/-} NK cells, NK1.1⁺Ly6G⁻CD49b⁺NKp46^{lo}Ly-49C^{+/-}CD127⁻; CD11b^{hi} NK cells, NK1.1⁺Ly6G^{hi}CD49b⁺NKp46^{hi}Ly-49C^{hi}CD127⁻. **D** and **E**, BAFF-RFP mice and BAFF-RFP *Ifnar*^{-/-} mice (**D**) and BAFF-RFP *Mavs*^{-/-} mice (**E**) were left untreated or treated i.p. with 200 μ g/mouse Poly(I:C) for 24 hrs. **D** and **E**, bar graphs show means \pm SEM of % of BAFF-RFP⁺ BM cells and summarize data from two independent experiments (N=6-7). Dotted lines show RFP⁺ background in WT and *Ifnar^{-/-}* (**D**) or *Mavs^{-/-}* (**E**) mice that were included as controls in each experiment. Statistics were performed by one-way ANOVA corrected with Holm-Sidak method for multiple comparisons; * p < 0.05, ** p < 0.01, *** *p*<0.001, **** *p*<0.0001.

Cell Phenotype	Cell Name	Cell marker					
		CD115	CX3CR1	CCR2	Ly6G	MHCII	BAFF-RFP
Ly6C ⁻ CD11c ⁻	CD11b+ myeloid precursor	-	-	-	-	-	++
Ly6C ^{int} CD11c ⁻	Nph prec	-	-	-	+	-	++
Ly6C ^{int} CD11c ⁻	Nph	-	-	-	+++	-	+++
Ly6C ^{hi} CD11c ⁻	Ly6C ^{hi} MO	++	++	++++	-	-	+/-
Ly6C ^{hi} CD11c⁺	Ly6C ^{hi} DC/Mph	+++	+++	+++	+	+	++
Ly6C⁻ CD11c⁺	preDC	++	+++	+	-	+	+

Supplemental Table S1. Phenotype of myeloid precursors in BM

+ and – indicates MFI levels of cell markers