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Section 1. The effect of TNCQ molecules on the electrical properties of the PBTTT 

OFETs 

 

 

Figure S1. Schematic images of (a) the PBTTT OFET and (b) the PBTTT OFET with TCNQ 

molecules deposited on the entire PBTTT channel. (c) The transfer curves of the PBTTT 

OFET (black line) and PBTTT OFET with TCNQ molecules deposited on the entire PBTTT 

channel (red line). 

  

0 20 40 60
10

-12

10
-10

10
-8

10
-6

–
 I

D
S
 (

A
)

– V
GS

 (V)

 Before TCNQ deposition

 After TCNQ deposition

(a) (c)

PBTTT

P++ Si

SiO2

Au Au

PBTTT OFET

TCNQ doped

PBTTT

P++ Si

SiO2

Au Au

TCNQ deposited OFET

(b)

OTS

OTS



  

4 

 

Section 2. Surface morphology of PBTTT film and DB/DC-FET  

 

Figure S2. The AFM micrographs (middle) and line-scan profiles (bottom) of (a) a pristine 

PBTTT film deposited on the OTS-treated SiO2/Si substrate, (b) TCNQ-incorporated channel 

region (PBTTT/TCNQ etched) and (c) F4-TCNQ-doped contact region (PBTTT/F4-TCNQ 

etched) in a DB/DC-FET device.  
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Section 3. Top-view schematic images for DC-FET and DB/DC-FET 

 

 

Figure S3. Top-view schematic images of (a) the DC-FET and (b) the DB/DC-FET with the 

dimensions shown for the effective channel length (Lch) of 50 μm and channel width of 1 mm. 

The F4-TCNQ-doped contact region (green and light green), the Au metal contacts (yellow) 

and TCNQ-incorporated region (red) in the PBTTT (purple) channel region are shown.  
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Section 4. Comparison of ToF-SIMS depth profile data of cyanide ion  

Figure S3 shows the depth profiles of the cyanide ions (CN-) for the pristine PBTTT 

film and PBTTT/TCNQ film in linear scale. The cyanide ion intensity is consistently higher 

in the PBTTT/TCNQ film down to the depth of nearly 40 nm which is the thickness of 

PBTTT film.
[S1]

 The large increases in the depth profiles of the cyanide ion intensity shown at 

each interface between two different media (i.e. vacuum/PBTTT and PBTTT/SiO2 interfaces) 

could be related to the matrix effect.
[S2-S4]

 

 

 

Figure S4. The depth profile of cyanide ion intensity for the pristine PBTTT film (black line) 

and PBTTT/TCNQ film (red line). The PBTTT/TCNQ film data clearly shows a higher 

cyanide ion signal than the pristine PBTTT film throughout the entire depth of the PBTTT 

film. 
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Section 5. Y-function method for extraction of contact resistance 

The Y-function method has been a useful methodology for obtaining the contact 

resistance of FET devices of organic semiconductors and two-dimensional semiconductors 

for which the device geometry is usually hard to define.
 [S5-S8]

 In order to extract the contact 

resistance, the Y-function method requires transfer curves (IDS-VGS curve) in a linear regime 

(           , where VGS, Vth and VDS are gate voltage, threshold voltage and drain-

source voltage, respectively). For the DC-FET and DB/DC-FET, IDS could be described as a 

following equation; 
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Figure S5. Data for Y-function method; a black line shows   √   (where gm is the 

transconductance), a red line is the Y-function and a blue dashed line represents the selected 

data to extract contact resistance.  
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Section 6. Time evolution of the transfer curves of the 100 μm channel devices 

 

 

 

Figure S6. Time evolution of the transfer curves of (a) the DC-FET and (b) the DB/DC-FET 

with the channel length of 100 μm over two months. 
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Section 7. Time evolution of the device parameters for the 50 μm channel devices 

Both the SS value and the Vth of the 50 μm channel DC-FET device show a rapid increase 

after 20 days which is due to the gradual channel doping via dopant diffusion (Figure S7). 

This trend agrees well with a rapid decrease of the ON/OFF ratio of the 50 μm channel DC-

FET device after 20 days (see Fig 4c in the main manuscript). A similar trend can be seen 

from the change in the normalized mobility plot (Figure S7c). However, the trend is weaker 

since the values monotonically decrease for all the devices. The degradation is potentially due 

to an unintentional, prolonged air exposure during the sample transportation between each 

measurement.
 [S9]
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Figure S7. Time evolution of the (a) subthreshold swing, (b) threshold voltage and         

(c) normalized mobility values for the DC-FET and the DB/DC-FET with the channel length 

of 50 μm and 100 μm over two months. 
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Section 8. Drain-voltage-bias-stress effect in DC-FET 

The drain-source voltage bias-stress measurement on DC-FET was performed to 

investigate whether there was any sign of dopant-drift-induced instability. The drain-voltage 

bias-stress measurement was performed by applying -60 V to the drain. The transfer curves 

of the pristine and DC-FET devices remain nearly the same after 23 hours of bias-stressing 

(Figures S8a and S8b). Especially, there is no rise in the OFF current for DC-FET. Therefore, 

the drift of the dopants induced by the drain bias is unlikely to cause device instability unlike 

the diffusion-induced device instability. 

 

  

 

Figure S8. Transfer curves measured before (black) and after (red) the 23 hours of bias-stress 

test for (a) the pristine FET and (b) DC-FET. 
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