Supplementary Information

Multifunctional N-P-doped carbon dots for regulation of apoptosis and autophagy in B16F10 melanoma cancer cells and *in vitro* imaging applications

Vivek K. Bajpai¹, Imran Khan^{2,3}, Shruti Shukla⁴, Sung-Min Kang⁵, Faisal Aziz³, Kumud Malika Tripathi⁶, Deepika Saini⁷, Hye-Jin Cho⁸, Nam Su Heo⁹, Sumit K. Sonkar^{7,*}, Lei Chen^{10,*}, Yun Suk Huh^{2,*}, Young Kyu Han^{1,*}

¹ Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea

² Department of Biological Engineering, Biohybrid Systems Research Center (BSRC),

Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea

³ The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA

⁴ Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana 131028, India

⁵ Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, Georgia, 30332, USA

⁶ Department of Chemistry, Indian Institute of Petroleum and Energy, Visakhapatnam 531035, Andhra Pradesh, India.

⁷ Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur 302017, India

⁸ Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600, Republic of Korea

⁹ Research Center for Materials Analysis, Korea Basic Science Institute (KBSI), Daejeon 34133, Republic of Korea
 ¹⁰ College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian

¹⁰ College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China

Running head: Anticancer potential of N-P-doped carbon nanodots

Corresponding authors: Sumit K. Sonkar (E-mail: <u>sksonkar.chy@mnit.ac.in);</u> Lei Chen (E-mail: <u>chenlei841114@hotmail.com);</u> Yun Suk Huh (E-mail: <u>yunsuk.huh@inha.ac.kr);</u> Young-Kyu Han (E-mail: <u>ykenergy@dongguk.edu</u>)

row min		16				10		ro	w max
		CT1	Т29	549	eLa	16F1			
	ld	Ĭ	Ţ	Â	Ť	à	ld		
		100.00	100.00	100.00	100.00	100.00	Cont	irol	
		99.88	99.12		98.21	98.51	1 µl/r	nL	
		99.64	98.14	98.64	97.23	95.61	2.5 µ	l/mL	
		91.66	93.13	92.44	95.64	92.14	5 μl/ι	nL	
		85.36	88.66	89.64	88.44	84.61	7.5 µ	l/mL	
		80.65	82.32	85.81	86.32	80.63	10 µl	/mL	
		75.66	78.63		85.12	75.65	12 µl	/mL	
		70.23	72.61	73.62	81.63	70.44	15 µl	/mL	
		68,55	58.66	58.63	78.96	65.98	20 µl	/mL	
			51.94	50.23	68.31	55.20	25 µl	/mL	
		48.10	44.68	45.17	58.12	50.02	30 µl	/mL	
		25.26	29.14	37.36	45.47	32.14	60 µl	/mL	
		15.21	22.34	28.23	25.16	12.54	90 µl	/mL	
			17.61	12.21	12.77	0.00	120 µ	ıl/mL	

Figure S1 Heatmap showing the anticancer activities (% cell viability) of NPCDs (0-120 μ L/mL) on different cancer cells HCT116, HT29, A549, Hela, and B16F10 cells.

Figure S2 Anticancer activity of NPCDs evaluated by MTT assay, effect of NPCDs (0- 120μ L/mL) on B16F10 melanoma cells.

Figure S3 Cytotoxicity of NPCDs on BEAS-2B human lung epithelial cells and HACAT as human keratinocytes.

Figure S4. Autophagy attenuated by siRNA ATG5. The efficiency of siRNA mediated knockdown of ATG5 in B16F10 cells was examined by RT-PCR.

Sr. No.	Primary Antibody used	Dilution used	Secondary antibody used	Company
1	Bax (Rabbit)	1:1000	Anti-rabbit IgG,	Cell signaling
			HRP-linked	technology
2	Bcl2 (Rabbit)	1:1000	Anti-rabbit IgG,	Cell signaling
			HRP-linked	technology
3	Caspase 3 (Pabhit)	1.1000	Anti-rabbit IgG,	Cell signaling
	Caspase-5 (Rabbil)	1.1000	HRP-linked	technology
4	R actin (Pabhit)	1.1000	Anti-rabbit IgG,	Cell signaling
	p-actili (Rabbit)	1.1000	HRP-linked	technology
5	CDK 2 (Pabbit)	1:1000	Anti-rabbit IgG,	Cell signaling
			HRP-linked	technology
6	CDK (Rabbit)	1.1000	Anti-rabbit IgG,	Cell signaling
		1.1000	HRP-linked	technology
7	CDV 6 (Dabbit)	1.1000	Anti-rabbit IgG,	Cell signaling
		1.1000	HRP-linked	technology
8 pź	n21 (Dabbit)	1.1000	Anti-rabbit IgG,	Cell signaling
	μετ (παυριί)	1.1000	HRP-linked	technology
9	LC 2 (Dabbit)	1.1000	Anti-rabbit IgG,	Cell signaling
	LC-3 (Rabbit)	1.1000	HRP-linked	technology
10		1:1000	Anti-rabbit IgG,	Cell signaling
	poz (Rabbil)		HRP-linked	technology
11		1.1000	Anti-rabbit IgG,	Cell signaling
	ΑΙ G-ο (Κάρριι)	1:1000	HRP-linked	technology

Table S1 Primary and secondary antibodies used in the study.

Secondary antibody dilution used 1:10,000 (Cell Signaling Technology).

Restore[™] PLUS Western Blot Stripping Buffer.

Primers	Sequence	Applications	
atg5-f	AGGCAACCTGACCAGAAACA	Real time PCR	
atg5-r	GAGGAAAGCAGAGGTGATGC	Real time PCR	
p62-f	TGCCCAGACTACGACTTGTG	Real time PCR	
p62-r	AGTGTCCGTGTTTCACCTTCC	Real time PCR	
lc3-f	AGCAGCATCCAACCAAAATC	Real time PCR	
lc3-r	CTGTGTCCGTTCACCAACAG	Real time PCR	
caspase3-f	TGAGCCATGGTGAAGAAGGA	Real time PCR	
caspase3-r	TCGGCCTCCACTGGTATTTT	Real time PCR	
βactin-f	TCCCTGTATGCCTCTGGTCGT	Real time PCR	
βactin-r	AAGCTGTAGCCTCTCTCGGTC	Real time PCR	

 Table S2 Primers used in this study.