
Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

Summary 

In this work, the authors present a new software package, Janggu, that supports deep learning in 

genomics. Janggu allows users to quickly convert a wide variety of genomics data file formats to 

data objects compatible with keras and scikit-learn. Janggu provides a keras wrapper for users to 

easily train and evaluate sequence-based deep learning models. 

The library is well documented and the authors provide many examples (in the Github repository 

and website) of how to use Janggu in practice. 

Major comments: 

1. Currently, the case studies in the paper read like research results; it would be more helpful if 

each case study explicitly stated the functionality from Janggu that was used. A large part of the 

paper is focused on how higher order sequence encodings can improve performance in the 

selected case studies. For instance, the first case study spends multiple paragraphs discussing how 

dropout improves performance for higher order sequence encodings, even though dropout is an 

aspect of model architecture design that has nothing to do with the library. In all of the case 

studies, it is unclear to me which steps directly use Janggu and which do not. 

2. I do not find their claim that Janggu is “directly compatible with popular deep learning libraries” 

outside of Keras to be accurate. The authors mention that Janggu differs from Selene in that 

Selene is tightly integrated with a specific neural network library (PyTorch)--but Janggu is similarly 

integrated with Keras. That is, even though dataset objects produced by Janggu can be used with 

other deep learning libraries as well as machine learning libraries like scikit-learn, I cannot directly 

use the training and evaluation components of Janggu to train a model specified in PyTorch. 

Certainly, the ability to use Janggu quickly and easily with Keras is a useful new contribution, but I 

find the flexibility in data processing to be the primary contribution of this library. What Janggu 

has that sets it apart from the existing genomics deep learning libraries is the flexibility with which 

users can generate training data from diverse genomics data types. Figure 1 seems to emphasize 

this fact as well, as the largest part of the figure is the different kinds of data that the library 

supports. The authors should adjust the language surrounding the library (e.g. in the abstract, 

introduction/related work) to reflect this. 

3. Case study 2: 

* Could the authors explain in the main text why they trained both DeepSEA and DanQ for this 

case study? For example, the authors might say that the 2 models were trained to show that 

Janggu can be used to easily compare 2 models. Otherwise, it seems unnecessary to include 

DeepSEA at all, since Fig. 3 only focuses on results from DanQ. 

* The authors should also note in the main text that DanQ outperforms DeepSEA specifically for 

auPRC. 

* Model performance depends strongly on both the training hyperparameters and model 

architecture. Since they retrained DeepSEA and DanQ with different hyperparameters (i.e. 

AMSgrad and limiting the number of epochs) from the original models, it is important for the 

authors to clarify in the text/figures that this is the case. The comparison made in this case study 

is very different from the comparison done in the DanQ manuscript, so the sentence citing the 

DanQ manuscript (i.e. "as reported previously") should be revised. 

4. Are the case studies in the manuscript provided in the `examples` directory of the GitHub 

repository? If not, is it possible to provide that code and/or point to what examples are most 



similar to those described in the paper? In general, it would be very helpful to link to the examples 

and provide some description/overview of each example in the main GitHub README. 

Minor comments: 

5. The authors write that they expect that Janggu will offer “significant reductions in repetitive 

software engineering aspects” associated with pre-processing steps. Can they illustrate this in their 

case studies? For example, how easy is it to generate all the different datasets for the JunD 

binding prediction example? How much work would it have been without Janggu? The legend for 

Fig. 2 should indicate that the different one-hot encoding orders and normalization methods are all 

supported by Janggu. 

6. Related to the previous point: with the exception of Fig. 1, the figures do not reference the 

library at all. Without looking at Fig. 1, I would have no idea that this paper was about a software 

library. 

7. Please make Fig. 3A and B easier to read. Also, is it possible to adjust the scales for subfigures 

C-E so that they are consistent with each other, or note in the text that there is a significant 

difference in scale between TFs and DNase/Histone? 

8. I find that the title/framing of Janggu in this paper somewhat limits the use case of the library. 

Janggu supports machine learning in genomics, with added support for deep learning through 

keras. 

9. The authors conclude that these use cases “confirmed that higher-order sequence features 

improve deep learning models.” They go further and say that they expect “improved accuracies for 

variant effect predictions” with higher-order encodings even though they have not done this 

evaluation. These statements may be too strong for the scope of this paper. The examples that the 

authors use for this paper are intended to illustrate Janggu. Even if their claim about performance 

improvements (by auPRC, etc.) for higher-order sequence encodings is true in these contexts, it 

should not be the focus of the manuscript. 

Reviewer #2 (Remarks to the Author): 

Most deep learning tools were designed to address a specific question on a fixed data set or by a 

fixed model architecture. In this paper, the authors introduced Janggu, a python library that allows 

easy access to common genomics data formats and provided useful tools for model evaluation. It 

piggybacks on existing python deep learning packages like Keras to utilize their strength. The 

authors demonstrate the usefulness of Janggu via three deep learning genomics applications. 

Overall, I think Janggu is a mature python implementation and would be helpful to users who wish 

to apply deep learning to genomics data. Its improvements over existing packages like pysster, 

kipoi, and selene were also well explained. I believe the computational biology community should 

welcome this package. 

Some comments below: 

Major: 

- I could not find the supplementary materials (both in the review system and on biorxiv). 

- For the second experiment, the authors compared their implementations with the original model 

of DeepSEQ and DanQ. Yet, I did not find any empirical results supporting their claim, both in the 



paper and in the Janggu documentation. I suggest the authors add empirical comparisons to the 

two models that hopefully show some consistency. 

- It would be helpful to discuss the scalability of the implementation. 

Minor: 

- The author may consider making Figures 3C-E horizontal for better visualization. 

- Wherever Pearson's correlation is used, it would be nice to provide a p-value, possibly based on 

linear regression and F-test. 

Reviewer #3 (Remarks to the Author): 

Kopp et al. present an end-to-end deep learning framework, Janggu, for genomics problems. 

Janggu accepts a wide range of genomics data formats and can preprocess and normalize data in 

multiple ways, train models using keras or sklearn, and evaluate and visualize model predictions. A 

quick inspection of the code and running some examples indicates that it has been properly 

developed and tested. While I think the proposed method checks many important boxes, this 

manuscript falls a bit short on demonstrating its capabilities. Please find my comments and 

rationale below. 

Major Comments 

- The most important claim that authors make is Janggu makes replicating and retraining 

genomics models very easy. For example, they retrain DeepSEA and DanQ models. The retrained 

models must be compared with the original models and the concordance between predictions 

needs to be tested and verified. This seems more important then DeepSEA vs. DanQ models. 

- There is no discussion about hyperparameter tuning in the manuscript or documentations. 

Performance of deep learning model or even simple elastic nets could significantly vary based on 

the hyperparameter setting. Since they are using keras, the authors might want to use the 

`kerastuner` package (https://github.com/keras-team/keras-tuner). For sklearn models, they can 

use `*CV` classes (e.g. ElasticNetCV). 

- A major criticism of deep models used to be their black box nature; however, in the past few 

years several ideas have been proposed such as saliency maps (https://arxiv.org/abs/1312.6034) 

and mutation maps (https://www.nature.com/articles/nbt.3300) or DeepLIFT 

(https://arxiv.org/abs/1704.02685) for genomics data. It appears that there is some importance 

attribution implemented, but this needs to be discussed in the manuscript. 

- In the JunD example, the authors claim that using di- and tri-nucleotide encoding improves 

performance. This is interesting and might indeed be real, but training and testing models on the 

same data acquisition technology can be problematic. What if the model is just learning ChIP-seq 

biases and artifacts? This could be a consequence of the way negative examples are defined. There 

are two things that needs to be shown here: 

1. Model’s performance when applied to a different technology, e.g., SELEX [PMID: 28473536]. 

2. Performance of a simple di- or tri-nucleotide composition model should also be reported. 

- Data augmentation by randomly flipping strands of inputs seems incorrect. When dealing with 

double-stranded DNA sequences, forward and reverse strands must be treated exactly the same. 

That is, model’s output for ACGTTA should be exactly the same as TAACGT. 

- The authors could elaborate on generating negative examples a bit. There are multiple ways (e.g. 

dinucleotide composition-preserving shuffling) and they might have drastic effect on the model. 

Minor Comments 



- Adding ensembles (e.g. bagging) would be very helpful for reducing model variance. 



Response to reviewer comments 

We are grateful to all three reviewers for their time and effort and wish to thank them for their 

constructive and helpful comments on the manuscript. We have revised the manuscript 

accordingly and hope that the changes and our point-by-point response below is adequate. 

Response to reviewer comments 

Reviewer #1 

1. Currently, the case studies in the paper read like research results; it would be more 

helpful if each case study explicitly stated the functionality from Janggu that was used. A 

large part of the paper is focused on how higher order sequence encodings can improve 

performance in the selected case studies. For instance, the first case study spends 

multiple paragraphs discussing how dropout improves performance for higher order 

sequence encodings, even though dropout is an aspect of model architecture design that 

has nothing to do with the library. In all of the case studies, it is unclear to me which 

steps directly use Janggu and which do not. 

Thank you for your suggestion. We have purposely tried to minimize adding too many technical 

details about which Janggu functions were used in the use case sections to preserve readability 

of the experiments also for readers with non-software development background. 

In all use cases, we made use of Janggu’s dataset objects Bioseq and Cover as well as the 

Janggu model wrapper which are summarized in the hallmark section of the manuscript. 

We have deferred the majority of the technical details to the methods section and attempted to 

further improve the methods section in the revision. We also added a link to the source code for 

reproducing the use cases (in the online documentation and the manuscript). We hope that this 

clarifies how Janggu was used for the demonstrations. 

2. I do not find their claim that Janggu is “directly compatible with popular deep learning 

libraries” outside of Keras to be accurate. The authors mention that Janggu differs from 

Selene in that Selene is tightly integrated with a specific neural network library 

(PyTorch)--but Janggu is similarly integrated with Keras. That is, even though dataset 

objects produced by Janggu can be used with other deep learning libraries as well as 

machine learning libraries like scikit-learn, I cannot directly use the training and 

evaluation components of Janggu to train a model specified in PyTorch. Certainly, the 



ability to use Janggu quickly and easily with Keras is a useful new contribution, but I find 

the flexibility in data processing to be the primary contribution of this library. What 

Janggu has that sets it apart from the existing genomics deep learning libraries is the 

flexibility with which users can generate training data from diverse genomics data types. 

Figure 1 seems to 

emphasize this fact as well, as the largest part of the figure is the different kinds of data 

that the library supports. The authors should adjust the language surrounding the library 

(e.g. in the abstract, introduction/related work) to reflect this.

While it is true that some parts of Janggu are based on an integration with keras, we would like 

to stress that the statements referred to by reviewer #1 specifically refer to the dataset objects. 

For example, in the abstract we specifically note: ”Through a numpy-like interface, the dataset 

objects are directly compatible with popular deep learning libraries, including keras.” 

Afterwards, in the introduction we state “These objects [the dataset objects] provide easy 

access ..., and they are directly compatible with commonly used deep learning libraries, such as 

keras or scikit-learn.”  

However, in order to avoid any confusion, we adjusted the hallmarks sections to explicitly 

mention that some features of Janggu are based on a keras integration. 

3. Case study 2: 

* Could the authors explain in the main text why they trained both DeepSEA and DanQ 

for this case study? For example, the authors might say that the 2 models were trained to 

show that Janggu can be used to easily compare 2 models. Otherwise, it seems 

unnecessary to include DeepSEA at all, since Fig. 3 only focuses on results from DanQ. 

We included both models to be able to compare them. In this case, we can see for example that 

DanQ outperforms DeepSEA on our benchmark analysis (see Figure S.1). 

* The authors should also note in the main text that DanQ outperforms DeepSEA 

specifically for auPRC. 

We believe that we have clearly described that we use the auPRC as a performance metric at 

various occasions for this and other use cases, including in the methods section and the figure 

and we have also noted that DanQ outperforms DeepSEA. 

* Model performance depends strongly on both the training hyperparameters and model 

architecture. Since they retrained DeepSEA and DanQ with different hyperparameters 

(i.e. AMSgrad and limiting the number of epochs) from the original models, it is important 

for the authors to clarify in the text/figures that this is the case. The comparison made in 

this case study is very different from the comparison done in the DanQ manuscript, so 

the sentence citing the DanQ manuscript (i.e. "as reported previously") should be 

revised. 



It is true that we have not performed the comparison between DanQ and DeepSEQ identically 

to the original publication, but we took the liberty of selecting slightly different hyperparameters 

as well as used an adapted benchmark dataset. 

While it is possible to choose different hyperparameters and even to optimize the 

hyperparameter choices, this was not our primary goal. 

Our primary goal is to demonstrate the flexibility and range of applications Janggu can be 

applied to, including utilizing a published network architecture and experimenting with new 

aspects (e.g. higher-order sequence encoding or different flanking windows). 

We documented our training and evaluation setup in the methods section of the manuscript and 

attempted to improve the methods section for the revision. Furthermore, we included a link to 

the repository containing the use cases which enables interested users to experiment with other 

aspects, including using different optimizers. 

We used AMSgrad (a derivative of ADAM) in all use cases because it is widely considered as a 

robust optimizer choice and we have used early stopping with each use case. 

Finally, we would like to point out  that our comparison is not very different from the comparison 

done in the DanQ paper. Even though we have used a slightly different training setup, in 

essence we have compared the DeepSEA and the DanQ model in our benchmark analysis and 

find that DanQ consistently outperforms DeepSEA. This general tendency of DanQ 

outperforming DeepSEA was also reported in the DanQ paper. We edited the text to show more 

clearly how benchmarks are done as stated above. 

Minor comments: 

5. The authors write that they expect that Janggu will offer “significant reductions in 

repetitive software engineering aspects” associated with pre-processing steps. Can they 

illustrate this in their case studies? For example, how easy is it to generate all the 

different datasets for the JunD binding prediction example? How much work would it 

have been without Janggu? The legend for Fig. 2 should indicate that the different one-

hot encoding orders and normalization methods are all supported by Janggu. 

As we pointed out in the manuscript, among the main benefits of Janggu are the dataset 

objects, which help to reduce redundant source code. Data acquisition in genomics for deep 

learning applications is a major bottleneck, which consumes time and effort. However, using 

Janggu, data can be easily loaded and parametrize the dataset objects. Thus, the developers 

can focus on biological hypothesis testing rather spending too much time on the technical 

overhead associated with the application. To demonstrate this, in this and the other use cases, 

we use Janggu with different file formats, model architecture as well as classification and 

regression tasks. A range of additional examples are available in the online documentation. 

We added notes in the caption of Figure 2 to indicate that different one-hot encoding orders and 

normalization options are available with the Bioseq and Cover objects. These aspects were also 



highlighted in the hallmarks section of the manuscript. We also attempted to improve the 

methods sections to clarify the use of these features. 

6. Related to the previous point: with the exception of Fig. 1, the figures do not reference 

the library at all. Without looking at Fig. 1, I would have no idea that this paper was about 

a software library. 

Fig 1 and the hallmark section describe the scope of the library. The remaining figures illustrate 

example applications where we made use of Janggu’s functionality. However, to maintain 

readability for non-programmers, we deferred the technical details to the methods section. 

7. Please make Fig. 3A and B easier to read. Also, is it possible to adjust the scales for 

subfigures C-E so that they are consistent with each other, or note in the text that there 

is a significant difference in scale between TFs and DNase/Histone? 

We removed the text labels from 3A in line with the reviewer’s suggestion for better readability, 

however, for 3B we left the labels, because they are informative about which TFs benefit most 

from the higher order sequence encoding. Finally, we replaced Figure 3C-E with a boxplot figure 

to improve readability. 

8. I find that the title/framing of Janggu in this paper somewhat limits the use case of the 

library. Janggu supports machine learning in genomics, with added support for deep 

learning through keras. 

Thank you for your suggestion. While we agree that some aspects can be used for machine 

learning models other than neural networks, parts of the library including the importance 

attribution or some model evaluation aspects require the use of keras and are therefore 

specifically targeted for deep learning applications. Therefore, our main focus rest on deep 

learning applications. Depending on the users’ needs and future developments, we might 

reconsider some of the Janggu’s functionality for other machine learning applications. However, 

this is currently beyond the scope of the package. 

9. The authors conclude that these use cases “confirmed that higher-order sequence 

features improve deep learning models.” They go further and say that they expect 

“improved accuracies for variant effect predictions” with higher-order encodings even 

though they have not done this evaluation. These statements may be too strong for the 

scope of this paper. The examples that the authors use for this paper are intended to 

illustrate Janggu. Even if their claim about performance improvements (by auPRC, etc.) 

for higher-order sequence encodings is true in these contexts, it should not be the focus 

of the manuscript. 

In line with the reviewer’s suggestion, we removed the statement about the improved accuracies 

for variant effect predictions in the conclusion part, but we added this point to the discussion 



section explaining that the improved model accuracies (based on the higher-order sequence 

features) will benefit the variant effect predictions, because they depend directly on the model 

predictions.

Reviewer #2 

Major: 

- I could not find the supplementary materials (both in the review system and on biorxiv). 

It is correct that on the review system, the supplementary notes were not attached. We 

apologize for that. The supplementary notes are however included on biorxiv (see the last three 

pages of the pdf). 

The revision contains the supplementary notes which summarize the neural network 

architectures used for the case studies as well as a performance comparison for the DeepSEA 

and DanQ use case (Fig S.1). 

- For the second experiment, the authors compared their implementations with the 

original model of DeepSEQ and DanQ. Yet, I did not find any empirical results supporting 

their claim, both in the paper and in the Janggu documentation. I suggest the authors 

add empirical comparisons to the two models that hopefully show some consistency. 

Assuming that by empirical comparison the reviewer is asking to compare our AUC score with 

the published AUC score from Zhou et. al, we have not included these for several reasons: 

First and foremost, the benchmark datasets are not identical in our case compared to the 

original datasets. Consequently, a direct comparison of the AUC’s is not justified. 

There are two reasons for the differences between the datasets: 

1) We have selected a larger validation set compared than was used Zhou et. al. While 

Zhou et. al have allocated 2200000 sequences for training and 4000 for validation, we 

opted for a more conservative 90%/10% split between training and validations set as we 

wanted to proceed with new experiments (different flanking regions and orders). We 

made this choice, because we noticed that for some TFs no binding events occur in the 

original validation set of 4000 data points and the use of a larger validation set alleviates 

this issue. As a consequence, this leaves fewer data points for model fitting, which might 

slightly decrease the performances. Such performance losses are of no concern for us, 

since our analysis compares the models on our own fixed benchmark analysis. 

However, this would create an unfair situation when comparing the AUC’s across the 

different benchmark datasets. 

2) Another reason for the differences between the benchmark datasets is that some of the 

original urls in supplementary table 1. of  Zhou et. al. do not exist anymore, including the 

histone modifications. As we pointed out in the methods section, we substitute these 

files with files that were downloaded from other sources, which are not necessarily 

identical to the original source. In fact, we found evidence that the peaks for the histone 

modifications are not identical with the histone modification peaks that were originally 



used. Consequently, this adds to the differences between the benchmark datasets and 

would render a direct comparison between AUC’s inappropriate. 

In the revised manuscript, we attempted to further improve the methods section in order to 

highlight the differences between the benchmark datasets. 

In addition, we added a link to the repository containing the use cases to the manuscript to 

facilitate reproducibility.  

- It would be helpful to discuss the scalability of the implementation. 

We have attempted to address the aspect of scalability in the dataset objects by offering 

different options of how the data is stored internally. These can be as 1) numpy array, 2) sparse 

array or 3) as hdf5 dataset. These options allow to balance between memory requirements and 

speed depending on the available computing infrastructure. For example, numpy arrays can be 

consumed very fast, but they might be too large to be stored in the process’s memory. Large 

datasets may be consumed from disk with the hdf5 format option. The sparse array is 

convenient for sparse datasets, including peak calls. 

This aspect was briefly outlined in the hallmarks section of the manuscript and it is also 

described in the online documentation. 

Minor: 

- The author may consider making Figures 3C-E horizontal for better visualization. 

In line with the reviewer’s request, we replaced Fig 3C-E with boxplots for better visability. 

- Wherever Pearson's correlation is used, it would be nice to provide a p-value, possibly 

based on linear regression and F-test. 

We have added a regression line based on linear regression to Fig 4 along with the F-test 

statistics and a P-value. We would also like to point out that Table 1 already summarizes the 

Pearson’s correlation coefficients with estimates of the standard error which indicates that the 

confidence intervals are very narrow and as a consequence results in extremely small P-values 

( < 2.2e-16). This is in part due to the fact that the test set contains >3000 data points.

Reviewer #3 

Major Comments 

- The most important claim that authors make is Janggu makes replicating and retraining 

genomics models very easy. For example, they retrain DeepSEA and DanQ models. The 

retrained models must be compared with the original models and the concordance 



between predictions needs to be tested and verified. This seems more important then 

DeepSEA vs. DanQ models. 

We have not included a comparison with the AUC score from Zhou et. al for several reasons: 

First and foremost, the benchmark datasets are not identical in our case compared to the 

original datasets. Consequently, a direct comparison of the AUCs is not justified. 

There are two reasons for the differences between the datasets: 

1) We have selected a larger validation set compared than was used Zhou et. al. While 

Zhou et. al have allocated 2200000 sequences for training and 4000 for validation, we 

opted for a more conservative 90%/10% split between training and validations set as we 

wanted to proceed with new experiments (different flanking regions and orders). We 

made this choice, because we noticed that for some TFs no binding events occur in the 

original validation set of 4000 data points and the use of a larger validation set alleviates 

this issue. As a consequence, this leaves fewer data points for model fitting, which might 

slightly decrease the performances. Such performance losses are of no concern for us, 

since our analysis compares the models on our own fixed benchmark analysis. 

However, this would create an unfair situation when comparing the AUC’s across the 

different benchmark datasets. 

2) Another reason for the differences between the benchmark datasets is that some of the 

original urls in supplementary table 1. of  Zhou et. al. do not exist anymore, including the 

histone modifications. As we pointed out in the methods section, we substitute these 

files with files that were downloaded from other sources, which are not necessarily 

identical to the original source. In fact, we found evidence that the peaks for the histone 

modifications are not identical with the histone modification peaks that were originally 

used. Consequently, this adds to the differences between the benchmark datasets and 

would render a direct comparison between AUC’s inappropriate. 

We would like to emphasize that our goal for this use case is not to demonstrate that we can 

precisely reproduce the original performances, but rather do we want to illustrate that Janggu 

allows to effectively reimplement published model architectures from scratch using raw genomic 

files in order to reuse, repurpose them for asking different questions, or simply experimenting 

with different variants of the network.  

In the revised manuscript, we attempted to further improve the methods section in order to 

highlight the differences between the benchmark datasets. We would like to point out that we 

made the effort to compare different methods for our benchmark dataset even though AUC 

comparison with the numbers in the original Zhou et. al. paper is impossible. This is an 

acceptable approach given the limitations itemized above.  

In addition, we added a link to the repository containing the use cases to the manuscript to 

facilitate reproducibility.  



- There is no discussion about hyperparameter tuning in the manuscript or 

documentations. Performance of deep learning model or even simple elastic nets could 

significantly vary based on the hyperparameter setting. Since they are using keras, the 

authors might want to use the `kerastuner` package (https://github.com/keras-

team/keras-tuner). For sklearn models, they can use `*CV` classes (e.g. ElasticNetCV). 

We agree that hyperparameter optimization is an important component in deep learning 

modelling, however, it depends on the context, the particular question and the user’s interest 

which parameters ought to be subjected to hyperparameter optimization. A general discussion 

on hyperparameter optimization is beyond the scope of our manuscript, as our primary goal is to 

demonstrate that Janggu facilitates easy access to genomics data for deep learning and helps 

with model evaluation aspects. 

However, we have added an example notebook to the online tutorial section on how to use 

Janggu in combination with hyperparameter optimization employing the hyperopt package for 

the interested user.  

- A major criticism of deep models used to be their black box nature; however, in the past 

few years several ideas have been proposed such as saliency maps 

(https://arxiv.org/abs/1312.6034) and mutation maps 

(https://www.nature.com/articles/nbt.3300) or DeepLIFT (https://arxiv.org/abs/1704.02685) 

for genomics data. It appears that there is some importance attribution implemented, but 

this needs to be discussed in the manuscript. 

We have mentioned the importance attribution in the hallmarks section of the manuscript, which 

summarizes Janggu’s functionality. Furthermore, we have used this feature for the JunD use 

case (see Fig. 2D) to highlight that that one of the most important sequence features that is 

revealed resembles the known JunD motif. The importance attribution is also mentioned in the 

discussion of the manuscript. 

- In the JunD example, the authors claim that using di- and tri-nucleotide encoding 

improves performance. This is interesting and might indeed be real, but training and 

testing models on the same data acquisition technology can be problematic. What if the 

model is just learning ChIP-seq biases and artifacts? This could be a consequence of the 

way negative examples are defined. There are two things that needs to be shown here: 

1. Model’s performance when applied to a different technology, e.g., SELEX [PMID: 

28473536]. 

2. Performance of a simple di- or tri-nucleotide composition model should also be 

reported. 

We acknowledge the fact that ChIP-seq data might be biased. However, a follow up 

investigation of the JunD use case is beyond the scope of this paper, because we are primarily 

concerned with showing that Janggu can be used to address a wide range of questions using 

genomics data and deep learning models.  



Regarding the JunD use case, while the models may capture ChIP-seq specific biases to some 

extent, inspection of the results, suggests that the models also capture useful biological signal. 

For example, the importance attribution feature highlights sequences stretches which highly 

agree with the known JunD motif (see Fig 2D). Therefore, it is unlikely that exclusively artifacts 

were picked up. 

Furthermore, we would like to stress that we have applied the higher order sequence encoding 

feature to all use cases and we observe moderate and sometimes substantial performance 

improvements not only when predicting JunD binding, but also with other benchmark dataset 

and model types (see use case 2 and to a lesser extend use case 3). 

Finally, it is widely accepted that higher order nucleotide composition plays an important role for 

describing transcription factor binding. In the discussion section we reference a number of 

publications along that line, including Keilwagen et al 2015. 

- Data augmentation by randomly flipping strands of inputs seems incorrect. When 

dealing with double-stranded DNA sequences, forward and reverse strands must be 

treated exactly the same. That is, model’s output for ACGTTA should be exactly the same 

as TAACGT. 

We believe this is a misunderstanding. The manuscript states that the orientation of coverage 

tracks are flipped not the DNA sequence. More clearly, We did not flip the strands for the DNA 

sequence. We flipped the orientation of the coverage tracks in this example. 

- The authors could elaborate on generating negative examples a bit. There are multiple 

ways (e.g. dinucleotide composition-preserving shuffling) and they might have drastic 

effect on the model. 

For simplicity, we chose the flanking 10kb region around peaks as negative set (as long as they 

didn’t overlap any other peak). This was described in the methods part. 

While other choices for generating the negative samples are possible, our main goal is to 

demonstrate the flexibility of the Janggu package by employing it on a broad range of 

applications. Therefore, optimizing the negative set for use case 1 is beyond the scope of this 

work. 

Minor Comments 

- Adding ensembles (e.g. bagging) would be very helpful for reducing model variance. 

It may be the case that ensembles help to reduce the model variance, but exploring this option 

is beyond the scope of this manuscript. Our main purpose is to demonstrate the flexibility of 

Janggu for addressing a range of questions in genomics using deep learning, since the library is 

our main contribution in this work. 



Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

Summary 

The authors do address many of the comments made in the previous review: the adjustments they 

have made to the language in the text and improvements in the figures have helped to better 

demonstrate the functionality provided in Janggu. That said, there are two main issues that remain 

inadequately addressed: (1) adjusting the way that Janggu is framed and how Janggu is described 

against related work such as Selene, and (2) the way that the 2nd case study, about DanQ and 

DeepSEA, is presented. 

Comments 

1. The authors continually emphasize in their response to reviewers that the “main benefits of 

Janggu are the dataset objects, which help to reduce redundant source code.” I fully agree with 

this statement and find Janggu to be an important contribution because of this and the high 

quality of the authors' code, documentation, and tutorials. However, I do not find the language 

they currently use in their paper to reflect this sentiment; rather, the authors seem to focus too 

much on trying to position themselves as a novel deep learning library for genomics. In their 

response to my first review, the authors mention that they are careful to tie the part about being 

“directly compatible with popular deep learning libraries” with only the dataset objects portion of 

Janggu. This is true, and I appreciate their adjustment to Hallmarks to explicitly describe the 

functionality in Janggu that is integrated with keras. Even so, there are many instances throughout 

the paper where the deep learning aspect of Janggu and its dependence on keras is understated. 

My comment #2 is one of the larger examples I take issue with, but here I will list a few other 

instances: 

* In the abstract: “Through a numpy-like interface, the dataset objects are directly compatible 

with popular deep learning libraries, including keras.” This can be adjusted to more explicitly state 

that “the dataset objects are directly compatible with popular deep learning libraries, and Janggu 

has added support for model development in keras.” 

* “Janggu additionally facilitates utilities to monitor the training, performance evaluation and 

interpretation.” This can be adjusted to “... monitor the training … and interpretation in keras.” 

* “[the dataset objects] are directly compatible with commonly used deep learning libraries, such 

as keras or scikit-learn.” This can be adjusted by replacing “deep learning” with “machine learning.” 

scikit-learn is not a commonly used deep learning library in genomics. 

2. In the related work section of Background, the authors imply that one major way that Janggu 

differs from Selene is in that Selene has a “tight integration” with “a specific neural network 

library.” The authors responded to my initial comment by saying that they emphasize clearly 

throughout the text that it is only the dataset objects that are directly compatible with multiple 

deep learning libraries--I agree with this and appreciate the additions they made to the Hallmarks 

section. Still, I must maintain that this phrase comparing Selene and Janggu in the related work 

section misrepresents Janggu, for these reasons: 

* It is still unclear to me how the authors make the distinction between Selene having a “tight 

integration” with PyTorch and Janggu having a looser integration with keras. Both Selene and 

Janggu list deep learning libraries as installation dependencies, and both include code that 

specifically facilitates training of models with a single deep learning library. It seems to me the 

distinction is only made in terms of what “selling points” the two different libraries want to 

emphasize. 



* In both libraries, the functionality for generating datasets and for training models is quite 

separate (i.e. different modules, different classes/objects initialized). The APIs for both libraries 

(i.e. Selene’s sampler module) can be used to generate datasets that can be saved/used with 

other deep learning libraries. This means that the out-of-the-box deep learning functionality 

provided by Janggu is, like Selene, written for a specific library. 

All of this is to say: such phrasing reinforces the idea that Janggu is a library that can be easily 

used with many popular deep learning libraries. Could the authors either provide code examples in 

their GitHub repository to demonstrate how Janggu can be used with libraries other than keras, or 

remove/adjust the phrase in the related work section? 

3. DeepSEA vs. DanQ case study: 

* Could the authors adjust the text here to mention auPRC? For example: “we find that the DanQ 

model consistently outperforms the DeepSEA model (by auPRC) in our benchmark analysis…” Even 

if auPRC is mentioned in the associated figure and in other case studies, it is important to be clear 

about it in this section as well. 

* The authors emphasize in the response to reviewers that their “goal for this use case” is to 

“illustrate that Janggu allows [users] to effectively reimplement published model architectures 

from scratch using raw genomic files in order to reuse, repurpose … or simply [experiment].” The 

problem here is that what the author is trying to convey to a reviewer does not match with what 

the authors choose to highlight in their main text (the whole first half of the text is about DeepSEA 

and DanQ) and the corresponding figure (Fig. 3), which focuses on DanQ model performance. 

Because Fig. 3 does not show any comparison with DeepSEA and DanQ anyway, I recommend the 

authors remove the model comparison from the text and just highlight the successful training and 

evaluation of many different variations of the DanQ model. The claim about model comparison 

distracts from the main point of the text. If the authors want to keep the DeepSEA data processing 

and training in their Github repository, they might just make a note about this in the case study or 

methods section (i.e. “To demonstrate generality we have also trained DeepSEA, see <link>). 

Reviewer #2 (Remarks to the Author): 

I thank the authors for their time and effort to address my comments. I do not have further 

concerns. 

Martin Jinye Zhang 

Reviewer #3 (Remarks to the Author): 

I thank the authors for taking the time to answer my and other reviewers’ questions. After 

carefully reading the rebuttal, I do not think I can make the decision and defer to the Editor. On 

one hand, Janggu is implemented solidly and appears to have good performance. On the other 

hand, the manuscript reads like a (well-written) technical report. It is not as technically detailed 

and thorough as a protocols article, nor does it provide insight into the learned models and delve 

into aspects of model training. For example, we see that using higher-order sequence features – 

arguably the most important contribution of Janggu – Improves performance. Is this improvement 

meaningful? Can it be replicated in different technologies? There are several other points raised by 

the reviewers (e.g. hyperparameter tuning) that I believe are crucial for a "deep learning for 

genomics" library.



Response to reviewer comments 
 
 
We are grateful to all reviewers for their time and effort and wish to thank them for their 
constructive and helpful comments on the manuscript. We have revised the manuscript 
accordingly and hope that the changes and our point-by-point response below are adequate. 
 

Response to reviewer comments 

Reviewer #1 
Comments 
1. The authors continually emphasize in their response to reviewers that the “main 
benefits of Janggu are the dataset objects, which help to reduce redundant source 
code.” I fully agree with this statement and find Janggu to be an important contribution 
because of this and the high quality of the authors' code, documentation, and tutorials. 
However, I do not find the language they currently use in their paper to reflect this 
sentiment; rather, the authors seem to focus too much on trying to position themselves 
as a novel deep learning library for genomics. In their response to my first review, the 
authors mention that they are careful to tie the part about being “directly compatible with 
popular deep learning libraries” with only the dataset objects portion of Janggu. This is 
true, and I appreciate their adjustment to Hallmarks to explicitly describe the functionality 
in Janggu that is integrated with keras. Even so, there are many instances throughout the 
paper where the deep learning aspect of Janggu and its dependence on keras is 
understated. My comment #2 is one of the larger examples I take issue with, but here I 
will list a few other instances: 
 
Thank you for the suggestion. We adapted the text according to the reviewer’s suggestion so as 
to avoid confusion about which elements of Janggu are independent of the machine learning 
libraries and which parts depend on keras-based models. Also in the beginning of the Janggu 
online documentation below the graphical abstract, we emphasize the “out-of-the-box evaluation 
(for keras models specifically)”. 
 
* In the abstract: “Through a numpy-like interface, the dataset objects are directly 
compatible with popular deep learning libraries, including keras.” This can be adjusted to 
more explicitly state that “the dataset objects are directly compatible with popular deep 
learning libraries, and Janggu has added support for model development in keras.” 



 
We modified the abstract accordingly. 
 
* “Janggu additionally facilitates utilities to monitor the training, performance evaluation 
and interpretation.” This can be adjusted to “... monitor the training … and interpretation 
in keras.” 
 
We modified this in line with the reviewer’s suggestion. 
 
* “[the dataset objects] are directly compatible with commonly used deep learning 
libraries, such as keras or scikit-learn.” This can be adjusted by replacing “deep 
learning” with “machine learning.” scikit-learn is not a commonly used deep learning 
library in genomics. 
 
We modified this according to the reviewer’s suggestion. 
 
2. In the related work section of Background, the authors imply that one major way that 
Janggu differs from Selene is in that Selene has a “tight integration” with “a specific 
neural network library.” The authors responded to my initial comment by saying that they 
emphasize clearly throughout the text that it is only the dataset objects that are directly 
compatible with multiple deep learning libraries--I agree with this and appreciate the 
additions they made to the Hallmarks section. Still, I must maintain that this phrase 
comparing Selene and Janggu in the related work section misrepresents Janggu, for 
these reasons: 
 
* It is still unclear to me how the authors make the distinction between Selene having a 
“tight integration” with PyTorch and Janggu having a looser integration with keras. Both 
Selene and Janggu list deep learning libraries as installation dependencies, and both 
include code that specifically facilitates training of models with a single deep learning 
library. It seems to me the distinction is only made in terms of what “selling points” the 
two different libraries want to emphasize. 
 
The “tight integration” is only one aspect distinguishing Selene and Janggu. Another important 
aspect relates to the types of models that can easily be addressed. Both of them were 
referenced in the main text. 
While there are arguably similarities between Selene and Janggu, there are a number of 
differences between Janggu and Selene making either library more easily applicable in certain 
situations than its counterpart. Selene’s most important asset is the command-line interface 
which allows to train, evaluate and analyse models based on a pre-specified configuration with 
limited programming effort. However, the easy handling through a configuration places 
restrictions on the modeling flexibility, not only by requiring modeling in pytorch but also 
regarding the types of models that can be addressed easily. On the other hand, the most 



important asset of Janggu, as the reviewer has appreciated, is the dataset objects which enable 
experimenting with a broad range of models.  
We attempted to demonstrate this in our use cases and online tutorial, some of which cannot 
easily be implemented with Selene without substantial effort: 

1. Selene offers limited support for genomics file formats, apart from fasta files and 
bed files when used for classification-tasks. This means in many cases where the 
modeling deviates from the DeepSEA-type of models (DNA/Protein sequence as 
input -> classification labels as output), the users need to perform preprocessing 
themselves. This is exemplified in the Selene tutorial for a regression task (see 
regression_mpra_example tutorial in the selene github repository) where the user 
has to extract and perform preprocessing of the relevant features beforehand. 
Likewise, since there is no support for coverage data, e.g. from BAM or BIGWIG 
files, the burden of preprocessing and feature extraction lies with the user. By 
contrast, the Janggu datasets can readily be used for such tasks. For example, in 
the use cases of our manuscript, we utilize data sets from different file formats, 
including FASTA, BAM, BIGWIG and BED format. We also illustrate classification 
and regression-task scenarios. 

2. Selene’s support focusses on single-modal models for classification tasks. In 
particular, models that take the DNA/Protein sequence as input. On the other 
hand, multi-modal models are currently not supported out-of-the-box. That is 
models that take multiple input features e.g. DNA and coverage. Likewise, 
architectures using auxiliary outputs are not supported out-of-the-box. Custom 
solutions would need to be implemented by the user, requiring programming 
proficiency and a deep understanding of the selene-sdk library, since the use 
cases primarily focus on how to set up the configuration file for running Selene 
from the command line interface, rather than demonstrating how to utilize the 
selene-sdk directly. By contrast, in our use cases we illustrate single- as well as 
multi-modal models, e.g. where DNA and DNase coverage is used as input for 
the model simultaneously. Thereby we demonstrate that Janggu can easily be 
used to implement a range of model types. 

3. While Selene’s command-line interface only works with pytorch, some 
components of the library may well be used for custom models that e.g. use 
keras models. However, to our knowledge, this has not been demonstrated 
before (e.g. on the online tutorial or in the paper) and therefore would likely 
require a fair amount of programming proficiency. On the other hand, our tutorial 
provides explicit examples on how to use Janggu datasets with various machine 
learning libraries, including keras, pytorch and scikit-learn. (​The pytorch 
example has been added since the last revision​). 
 

 
In summary, Selene and Janggu have their individual strengths and weaknesses. Selene’s 
configurable command-line interface allows setting up deep learning applications for certain 



models with little programming effort, whereas Janggu offers greater modeling flexibility through 
the dataset objects.  
We agree that there is additional support in Janggu for keras based models, including through 
the reverse complement layer. But we hope to have clarified the dependence on keras for 
certain features (see our answer above point). We also hope to have clarified the difference 
between Selene and Janggu and that this is not just based on integrating with a different deep 
learning library. 
 
* In both libraries, the functionality for generating datasets and for training models is 
quite separate (i.e. different modules, different classes/objects initialized). The APIs for 
both libraries (i.e. Selene’s sampler module) can be used to generate datasets that can be 
saved/used with other deep learning libraries. This means that the out-of-the-box deep 
learning functionality provided by Janggu is, like Selene, written for a specific library. 
 
Please see our answer above, regarding the differences between the libraries. 
Accordingly, the question about what entails “out-of-the-box” support does not only rely on the 
deep learning library that is used, but also which types of models are best supported.  
As mentioned above, both libraries have their strengths and weaknesses in certain aspects. 
 
All of this is to say: such phrasing reinforces the idea that Janggu is a library that can be 
easily used with many popular deep learning libraries. Could the authors either provide 
code examples in their GitHub repository to demonstrate how Janggu can be used with 
libraries other than keras, or remove/adjust the phrase in the related work section? 
 
We have updated the online tutorial to feature examples on how to use Janggu datasets with 
different libraries, including keras, pytorch and scikit-learn. The pytorch example was added 
since the last revision. 
 
3. DeepSEA vs. DanQ case study: 
* Could the authors adjust the text here to mention auPRC? For example: “we find that 
the DanQ model consistently outperforms the DeepSEA model (by auPRC) in our 
benchmark analysis…” Even if auPRC is mentioned in the associated figure and in other 
case studies, it is important to be clear about it in this section as well. 
 
We added the remark to the auPRC in the text according to the the reviewer’s suggestion. 
 
* The authors emphasize in the response to reviewers that their “goal for this use case” 
is to “illustrate that Janggu allows [users] to effectively reimplement published model 
architectures from scratch using raw genomic files in order to reuse, repurpose … or 
simply [experiment].” The problem here is that what the author is trying to convey to a 
reviewer does not match with what the authors choose to highlight in their main text (the 
whole first half of the text is about DeepSEA and DanQ) and the corresponding figure 
(Fig. 3), which focuses on DanQ model performance. Because Fig. 3 does not show any 



comparison with DeepSEA and DanQ anyway, I recommend the authors remove the 
model comparison from the text and just highlight the successful training and evaluation 
of many different variations of the DanQ model. The claim about model comparison 
distracts from the main point of the text. If the authors want to keep the DeepSEA data 
processing and training in their Github 
repository, they might just make a note about this in the case study or methods section 
(i.e. “To demonstrate generality we have also trained DeepSEA, see ). 
 
We haven’t added the comparison between DeepSEA and DanQ in the Fig.3 due to the limited 
space. However, we have included it as Supplementary Fig. S.1. The results are referenced in 
the main text which explains that DanQ output performs DeepSEA. 
 
 
 
Reviewer #3 (Remarks to the Author): 
 
I thank the authors for taking the time to answer my and other reviewers’ questions. After 
carefully reading the rebuttal, I do not think I can make the decision and defer to the 
Editor. On one hand, Janggu is implemented solidly and appears to have good 
performance. On the other hand, the manuscript reads like a (well-written) technical 
report. It is not as technically detailed and thorough as a protocols article, nor does it 
provide insight into the learned models and delve into aspects of model training. For 
example, we see that using higher-order sequence features – arguably the most 
important contribution of Janggu – Improves performance. Is this improvement 
meaningful? Can it be replicated in different technologies? There are several other points 
raised by the reviewers (e.g. hyperparameter tuning) that I believe are crucial for a "deep 
learning for genomics" library. 
 
We thank the reviewer for the comments and appreciate the positive feedback on the 
implementation. Many technical details regarding how to use Janggu are in the tutorials of the 
package documentation website (​https://janggu.readthedocs.io/​). This includes a tutorial on how 
to use hyperparameter optimization together with Janggu as well as a link to the source code for 
reproducing the use cases. We made sure that users will have no problem getting started by 
providing extensive technical documentation. Some of the points raised have been addressed in 
the earlier round where we mentioned previous studies showing higher-order sequence features 
are important for transcription factor binding and discussed in the manuscript. Therefore, 
Janggu provides the capability to include this known feature for TFBS detection in deep learning 
models. We are not claiming that the higher-order features are a new discovery in TFBS related 
research. 
 

https://janggu.readthedocs.io/


REVIEWERS' COMMENTS: 

Reviewer #1 (Remarks to the Author): 

The authors have addressed all my points successfully.


