Cell Reports, Volume 32

Supplemental Information

Modeling Type 1 Diabetes In Vitro Using

Human Pluripotent Stem Cells

Nayara C. Leite, Elad Sintov, Torsten B. Meissner, Michael A. Brehm, Dale L. Greiner, David M. Harlan, and Douglas A. Melton

Figure S1. iPSC- β and iPSC- α are sensitive to ER-stress induction *in vitro*. Related to Figure 1.

(A-B) iPSC lines characterization.

(A) Flow cytometric analysis of pluripotent markers in iPSCs (n=3 T1D and n=1 iPSC ND donor, n=3 batches per donor line), quantification of positive cells for OCT4, TRA1-60, SSEA4, SOX2 in comparison to IgG isotype control.

(B) Representative flow cytometry histograms. Each color represents a different donor's iPSCs. Dashed histogram represents the IgG isotype control.

(C) Flow cytometry quantification of C-Peptide and NKX6.1 double positive cells in the iPSC- β protocol. Data are mean ± SEM. n=3 T1D iPSC donors and n=1 ND iPSCs line, n=3 to 7 differentiation batches per donor line. (D) Representative flow cytometry plots for β and α cell markers, C-Peptide, NKX6.1 and glucagon in cells

produced from the β cell differentiation protocol (top panels, as presented in the scheme S1D) or α cell differentiation protocol (bottom panels, as presented in the scheme S1D).

(E and F) Western blot analysis of PERK, PDI and BIP, in differentiated iPSC-derived endocrine cells (β or α as indicated), untreated or treated with thapsigargin (thap, 5µm for 5 h).

(F) Quantification of western blot analysis. n=3 T1D iPSC donors, n=1 iPSC ND donor, n=3 differentiation batches per donor line. T1D¹, T1D² and T1D³ were pooled together. Data are mean \pm SEM.

(G-N) Flow cytometry analysis gates of differentiated iPSC-derived endocrine cells treated with thap (5 μ m for 5 h) or IFN γ (100U/ml, 48h). Median fluorescence intensity (MFI) in (C-F) C-peptide positive or (G-J) glucagon positive cells, co-stained with (C and G) HLA-DR, (D and H) HLA-E, (E and I) FasR or (F and J) PD-L1. n=3 T1D iPSC donors, n=1 iPSC ND donor, n=3 batches per donor line. T1D¹, T1D² and T1D³ were pooled together.

(O and P) Representative flow cytometry histograms gates of (K) C-peptide positive cells or (L) glucagon positive cells, co-stained with HLA-A, B, C, HLA-DR, HLA-E, PD-L1 or FasR.

(Q) Representative flow cytometry histograms gates of C-peptide positive cells (purple) or glucagon positive cells (red) of iPSC- β compared to human islets. (n=3 T1D iPSC donors, n=1 iPSC ND donor, n=1 differentiation batch per donor line).

p<0.005, *p<0.0005, ****p<0.0001 Ordinary one-way ANOVA. Data are mean ± SEM.

20-

10-

٥

Unstim.

anti-

beads

CD3/CD28

0.5

2

Effectors per Target

ns

0.5

1

ns

2

Gating strategy for Activation Assays

Unstim.

anti-

beads

CD3/CD28

CD8+CD25+

20-

10

0 ПċГ

G

SSC-A

CD3+CD25+

20-

10-

0

F

Πċ

Unstim.

anti-

beads

CD3/CD28

FSC-H

eren and the

Lymphocytes

Figure S2. Positive and negative controls for the PBMCs activation assays. Related to Figure 2.

(A) Representative gating strategy for lymphocytes, single cells, CD3⁺, and CD4⁺ or CD8⁺ cell populations; used in all T cell activation gating presented in Figures 2 to 4.

(B-C) Flow cytometry analysis of T cell activation markers, CD25⁺ and CD69⁺ on CD3⁺, CD4⁺ and CD8⁺ populations activated with anti-CD3/anti-CD28 beads.

(B) Representative flow cytometry plots of CD3⁺, CD4⁺ and CD8⁺ cells showed in B, expressing CD25 or CD69, unstimulated (gray histogram) or stimulated with anti-CD3/CD28 activation beads (in blue: CD69 and in red: CD25 positive control).

(C) PBMC negative and positive controls. Positive control stimulations were performed using anti-CD3/CD28 beads. Data are mean ± SEM.

(D) Flow cytometry representation of T cell activation markers, CD25⁺ and CD69⁺ on CD3 population from PBMCs treated with thap (0.1 or 1uM for 5h) or PMA/Ionomycin, as a positive control (n=3 T1D PBMCs preparation). (E) Flow cytometry analysis of T cell activation markers after co-culture, gated on CD3⁺ cells. Autologous PBMCs co-cultured with iPSC- β untreated or pre-treated with thap (5µm for 5 h) ± IFN γ (100U/ml for 48h) (n=1 T1D donor, n=3 differentiation batches per donor line.

T1D¹, T1D² and T1D³ were pooled together).

(F) Representative gate strategy of data presented on E.

(G) Gating strategy for activation assays. Representative gating strategy for lymphocytes, single cells, CD3⁺, and CD4⁺ or CD8⁺ cell populations, and activation markers CD25 and CD69; used in all T cell activation gating presented in Figures 2 and 4.

Data are mean ± SEM. *<0.05, **p<0.005, ***p<0.0005, ****p<0.0001 Two-way ANOVA: (E) Purple: thaps vs. untreated. Grey: Thap+IFNγ vs. IFNγ. Black: IFNγ vs. no IFNγ. ns, non-significant. Effector to target ratio are indicated.

D

Gating strategy for Activation Assays

Figure S3. iPSC-β induced T cell activation is mediated by direct T cell-HLA interaction in T1D and ND donors. Related to Figure 3.

(A) PBMCs co-cultured for 48h with autologous iPSC- β (n=3 T1D donors, 3 differentiation batched per donor. T1D¹, T1D² and T1D³ were pooled together) in increasing PBMCs to iPSC- β ratio. iPSC- β were untreated or pre-treated with thapsigargin (thap, 5µM for 5h) and/or anti-HLA antibody for 30min prior to co-culture. Flow cytometry analysis after co-culture of T cell activation markers, CD25⁺ and CD69⁺ on CD3⁺ gated cells and CD8⁺ gated cells as indicated.

Data are mean \pm SEM. *p<0.05, **p<0.005, ***p<0.0005, ****p<0.0001. Two-way ANOVA. ns, non-significant. n=3 T1D iPSC donors, n=1 iPSC ND donor, n=3 batches per donor line. T1D¹, T1D² and T1D³ were pooled together.

(B) Percentage of HLA-A, B, C⁺ expression in total cells in iPSC- β differentiation and C-peptide⁺/glucagon⁻ cells (iPSC- β cells). Samples were collected 10 days after transduction with a lentivirus vector targeting beta 2 microglobulin (B2M) gRNA or non-targeting control gRNA and expressing Cas9.

(C) Expression of the activation marker CD25 (left) and CD69 (right) in CD8⁺ gated cells after co-culture with autologous iPSC- β transduced with a lentivirus vector expressing a non-targeting or B2M gRNA and Cas9. n=1 ND iPSC donor, n=3 differentiation batches per donor line. T1D¹, T1D² and T1D³ were pooled together. *p<0.05, **p<0.01, student t-test. Data are mean ± SEM.

(D) Representative gating strategy for lymphocytes, single cells, CD3⁺, and CD8⁺ cell populations, and activation markers CD25 and CD69; used in T cell activation gating presented in Figure 3.

Figure S4. Activation and killing by T cells is selective for iPSC-β in T1D and ND donors. Related to Figure 4. (A-C) Cell surface T cell activation marker expression showed as (A and C) frequency or (B) MFI of CD25⁺ or CD69⁺ cells. Expression of the activation marker CD25 (top) and CD69 (bottom) on CD3⁺, CD4⁺ or CD8⁺ gated T cells as indicated. PBMCs (gated on CD3⁺, CD4⁺ and CD8⁺ populations) co-cultured with autologous iPSC-β or iPSC-α in increasing PBMCs:iPSC-β or iPSC-α ratios. (A) n=3 T1D iPSC donors, n=3 differentiation batches per donor line. T1D¹, T1D² and T1D³ were pooled together. (B and C) n=1 ND iPSC donor, n=3 differentiation batches per donor line. Data are mean ± SEM. Two-way ANOVA. *p<0.05, **p<0.005, ***p<0.0005, ****p<0.0001, ns, not significant.

(D) Flow cytometry quantification of C-peptide and glucagon positive cells generated using the β differentiation protocol and enriched using CD49a and CD26 magnetic sorting. Percentage of enriched iPSC- β or iPSC- α cell populations are shown. n=1 T1D iPSC donor, n=3 differentiation batches per donor line.

(E) Percentage of live iPSC- β (C-peptide⁺/Glucagon⁻) or iPSC- α (C-peptide⁻/Glucagon⁺) from β or α differentiation protocols, treated with thap, and co-cultured with autologous PBMCs (2:1 effector to target ratio). Values are normalized from control wells without PBMCs. n=3 T1D. T1D¹, T1D² and T1D³ were pooled together. Data are mean \pm SEM. ns, not significant, student t-test.

(F) Representative gating strategy for acquiring absolute counts of live iPSC- β or iPSC- α after co-culture, gated for C-peptide⁺/Glucagon⁻ or C-peptide⁻/Glucagon⁺, respectively. Co-cultured PBMCs were stained with Cell Trace Violet (CTV) dye to distinguish from iPSC- β or iPSC- α .

(G) Gating strategy for apoptosis assay. Representative gating strategy for non-lymphocytes, single cells, CD49a⁺, CD26⁺, and apopxin⁺.

Donor number	Age	Gender	Disease diagnosis	Age of diagnosis	BMI (CDC calculator)	HLA-A2	HLA risk alleles
$T1D^1$	42	F	T1D	5	25.2	Positive	HLA-DR3, -DR4, - DQ8
T1D ²	27	F	T1D	25	23.6	Positive	None
$T1D^3$	44	М	T1D	25	26.4	Positive	HLA-DR3
ND	27	F	ND	N/A	21.4	Positive	None

Table S1. Patient samples. Related to figure 1.

Table S2. List of transcripts and target sequences used for Nanostring expression profiling. Related to STAR methods.

Gene Name	Accession	Position	Target Sequence
ARX	NM_139058.2	2622-2721	TGCACTCAGCGTGGTATGGTAAAAGTTTGTCCTCCCGTAGATTC TTACTGTGTTGTAGATACGGTAGGGTTCCTAGACAAATATTTAT GTACTCAAGCCC
CHGA	NM_001275.3	293-392	CTGCGCCGGGCAAGTCACTGCGCTCCCTGTGAACAGCCCTATG AATAAAGGGGGATACCGAGGTGATGAAATGCATCGTTGAGGTC ATCTCCGACACACTT
GCG	NM_002054.2	296-395	TGGACTCCAGGCGTGCCCAAGATTTTGTGCAGTGGTTGATGAA TACCAAGAGGAACAGGAATAACATTGCCAAACGTCACGATGA ATTTGAGAGACATGC
INS	NM_000207.2	309-408	GGGTCCCTGCAGAAGCGTGGCATTGTGGAACAATGCTGTACCA GCATCTGCTCCCTCTACCAGCTGGAGAACTACTGCAACTAGAC GCAGCCCGCAGGCA
NKX6-1	NM_006168.2	661-760	CTGGCCTGTACCCCTCATCAAGGATCCATTTTGTTGGACAAAG ACGGGAAGAGAAAACACACGAGACCCACTTTTTCCGGACAGC AGATCTTCGCCCTGG
PDX1	NM_000209.3	414-513	GGGAGCCGAGCCGGGCGTCCTGGAGGAGCCCAACCGCGTCCA GCTGCCTTTCCCATGGATGAAGTCTACCAAAGCTCACGCGTGG AAAGGCCAGTGGGCA

SST	NM_001048.3	286-385	AGCTGCTGTCTGAACCCAACCAGACGGAGAATGATGCCCTGGA ACCTGAAGATCTGTCCCAGGCTGCTGAGCAGGATGAAATGAGG CTTGAGCTGCAGAG
ActB	NM_001101.2	1011-1110	TGCAGAAGGAGATCACTGCCCTGGCACCCAGCACAATGAAGAT CAAGATCATTGCTCCTCCTGAGCGCAAGTACTCCGTGTGGATC GGCGGCTCCATCCT
G6PC2 (IGRP)	NM_021176.2	693-792	ACGGCCAGTCTGGGCACATACCTGAAGACCAACCTCTTTCTCTT CCTGTTTGCAGTTGGCTTTTACCTGCTTCTTAGGGTGCTCAACA TTGACCTGCTGT
GAD1	NM_000817.2	576-675	CAAAGGACCAACAGCCTGGAAGAGAAGAGTCGCCTTGTGAGT GCCTTCAAGGAGAGGCAATCCTCCAAGAACCTGCTTTCCTGTG AAAACAGCGACCGGG
GAD2	NM_000818.2	1246-1345	TGTATGCCATGATGATCGCACGCTTTAAGATGTTCCCAGAAGT CAAGGAGAAAGGAATGGCTGCTCTTCCCAGGCTCATTGCCTTC ACGTCTGAACATAG
IAPP	NM_000415.1	311-410	ATTCTCTCATCTACCAACGTGGGATCCAATACATATGGCAAGA GGAATGCAGTAGAGGTTTTAAAGAGAGAGAGCCACTGAATTACTT GCCCCTTTAGAGGA
PTPRN (IA2)	NM_001199763.1	477-576	TTCTCCAACGCTTACAAGGTGTGCTCCGACAACTCATGTCCCAA GGATTGTCCTGGCACGATGACCTCACCCAGTATGTGATCTCTCA GGAGATGGAGCG
SLC30A8 (ZNT8)	5 NM_173851.2	2166-2265	CAGATGCAACCAATTCATTCAGTCCACGAGCATGATGTGAGCA CTGCTTTGTGCTAGACATTGGGCTTAGCATTGAAACTATAAAG AGGAATCAGACGCA