

advances.sciencemag.org/cgi/content/full/6/24/eaba0777/DC1

Supplementary Materials for

R-loops coordinate with SOX2 in regulating reprogramming to pluripotency

Yaoyi Li, Yawei Song, Wei Xu, Qin Li, Xinxiu Wang, Kuan Li, Juehan Wang, Zicong Liu, Sergiy Velychko, Rong Ye, Qing Xia, Lei Wang, Rong Guo, Xiaotao Dong, Zhikai Zheng, Yushuang Dai, Haojie Li, Mingze Yao, Yuanchao Xue, Hans R. Schöler, Qianwen Sun*, Hongjie Yao*

*Corresponding author. Email: sunqianwen@mail.tsinghua.edu.cn (Q.S.); yao_hongjie@gibh.ac.cn (H.Y.)

Published 10 June 2020, *Sci. Adv.* **6**, eaba0777 (2020) DOI: 10.1126/sciadv.aba0777

The PDF file includes:

Figs. S1 to S7 Legends for tables S1 to S3

Other Supplementary Material for this manuscript includes the following:

(available at advances.sciencemag.org/cgi/content/full/6/24/eaba0777/DC1)

Tables S1 to S3

Fig. S1. Analysis of ssDRIP-seg and RNA-seg of reprogrammed cells at different stages of reprogramming. (A) The snapshots showing the distribution of ssDRIP-seq signals in two biological replicates at different stages of reprogramming. (B) PCA analysis of ssDRIP-seq signals of MEFs reprogrammed with OSKM at different stages of reprogramming. (C) PCA analysis of RNA-seq signals of MEFs reprogrammed with OSKM at different stages of reprogramming. (D) Schematic representation of the workflow for analyzing differential R-loop regions, see methods. (E) Schematic representation of the workflow for analyzing differential R-loop genes (DRGs). (F) Statistics of genes with increased or decreased R-loop levels (P < 0.01) at promoter (upper), gene body (middle), or terminator (lower) region of genes in iPSCs compared with MEFs reprogrammed with OSKM on day 0. (G) Scatter plots showing gene expression (x axis) and R-loops (y axis) at promoter (upper), gene body (middle), or terminator (lower) region in iPSCs compared with MEFs reprogrammed with OSKM on day 0. The concurrently changed genes were shown and colored by R-loop clusters shown in Fig. 1B. (H) The snapshots showing the distribution of ssDRIP-seq signals of *Tdrd12* and *Rif1* loci in two biological replicates at different stages of reprogramming (top). The changes of R-loop level in Tdrd12 and Rif1 loci at different stages of reprogramming (bottom left). The changes in *Tdrd12* and *Rif1* expression were measured by NRO-RT-qPCR. All qPCR data were analyzed and normalized to Gapdh expression (bottom right). (I) Statistics of concurrently changed genes from different RNA clusters, sorted by dynamic relationships between gene expression and R-loops (\uparrow means upregulated, \downarrow means downregulated). (J) Distribution of differential R-loop regions from six R-loop clusters shown in Fig. 1B. **(K)** R-loop level of different ATAC clusters defined by Knaupp et al. (2017). (L) Left, overlap of enhancers containing eRNAs and upregulated (Up) R-loops with upregulated, unchanged or downregulated expression of genes. Right, permutation test of enhancers containing eRNAs and upregulated (Up) R-loops or nonupregulated (Non-up) R-loops with upregulated, unchanged or downregulated expression of genes. The total genes were as a control.

Fig. S2. Verification of RNaseH1^{D209N} and gene expression level. (A) Expressional analysis of RNaseH1 at different stages of reprogramming (RPKM, reads per kilobase of exon model per million mapped reads of RNAseq. Mean ±SD). (B) Western blot to test the knockdown efficiency of RNaseH1 in MEFs reprogrammed with OSKM, together with control plasmid (pSupershLuci), and two independent RNaseH1 shRNAs on day 5 in iCD1 medium. (C) Sequence alignment of RNaseH1 in different species. Conserved residue of catalytic domain is highlighted in red asterisk. (D) R-loop substrate (Bottom, 25 nM) with Cy5-labeled (*) RNA (red line) or DNA (black line) was incubated with the increasing concentrations of RNaseH1, RNaseH1^{WKK} (Left) or RNaseH1^{WKKD} (Right) in the presence of RNaseH1 (10 nM). The reaction was detected on a native polyacrylamide gel. (E) Western blot to test the overexpression efficiency of RNaseH1 in MEFs reprogrammed with OSKM, together with control plasmid (pMXs-Flag), pMXs-RNaseH1 and different RNaseH1 mutations on day 5 in iCD1 medium. (F) Western blot to test the expression of endogenous RNaseH1 and exogenous RNaseH1^{D209N}. (G) qRT-PCR analysis of genes associated with DNA replication stress in MEFs reprogrammed with OSKM and pMXs-Flag (Ctrl) and pMXs-RNaseH1^{D209N} on day 7. Error bars correspond to means \pm SD (*P \leq 0.05, **P \leq 0.01, ***P \leq 0.001, ns, not significant, $P \ge 0.05$, two-tailed Student's *t* test). (H) qRT-PCR analysis of genes associated with DNA replication stress in MEFs reprogrammed with OSKM and pSuper-shLuci (shCtrl), and two independent RNaseH1 shRNAs on day 7. Error bars correspond to means \pm SD (*P \leq 0.05, **P \leq 0.01, ***P \leq 0.001, ns, not significant, $P \ge 0.05$, two-tailed Student's *t* test). (I) Western blot to detect protein level of γH2A.X in MEFs reprogrammed with OSKM and pMXs-Flag, pMXs-RNaseH1, pMXs-RNaseH1^{D209N} and pSuper-shLuci (shCtrl), two independent RNaseH1 shRNAs on days 3 and 7, respectively. (J) Western blot to detect protein level of vH2A.X in MEFs reprogrammed with OSKM and pSuper-shLuci (shCtrl), two independent RNaseH1 shRNAs on days 3 and 7, respectively. (K) Cell apoptosis of MEFs reprogrammed with OSKM and pMXs-Flag, pMXs-RNaseH1, pMXs-RNaseH1^{D209N} and pSuper-shLuci (shCtrl), two independent RNaseH1 shRNAs on day 7. Error bars correspond to means ± SD (*P \leq 0.05, **P \leq 0.01, ***P \leq 0.001, ns, not significant, P \geq 0.05, two-tailed Student's t test). (L) Cell apoptosis of MEFs reprogrammed with OSKM and pSuper-shLuci (shCtrl), two independent RNaseH1 shRNAs on day 7.

Fig. S3. RNaseH1 activity loss inhibits reprogramming in a lentivirusinducing system. (A) Workflow of lentivirus-inducing reprogramming system. (B) *Oct4*-GFP colony number of MEFs reprogrammed with lentiviral infection of OSKM and retroviral infection of pSuper-shLuci (shCtrl), plus two independent shRNAs for RNaseH1 on day 8 in iCD1 medium. Error bars correspond to means \pm SD (*P \leq 0.05, **P \leq 0.01, ***P \leq 0.001, two-tailed Student's *t* test). (C) AP staining on day 5, corresponding to Fig. S3B. (D) *Oct4*-GFP colony number of MEFs reprogrammed with lentiviral infection of OSKM and retroviral infection of pMXs-Flag (Ctrl), RNaseH1, and RNaseH1^{D209N} on day 8 in iCD1 medium. Error bars correspond to means \pm SD (*P \leq 0.05, **P \leq 0.001, ***P \leq 0.001, twotailed Student's *t* test). (E) AP staining on day 5, corresponding to Fig. S3D.

FLAG D7

1.96 Mb

Fig. S4. Analysis of ssDRIP-seq and RNA-seq of MEFs reprogrammed with OSKM and RNaseH1^{D209N} at different stages of reprogramming. (A) MA plots showing the DEGs (red dot) of RNaseH1^{D209N}/RNaseH1 at different time points during reprogramming. (B) Kernel density of log₂ fold change (RNaseH1/Flag, D7, Left) and log₂ fold change (RNaseH1^{D209N}/Flag, D7, Right) of intergenic (blue) or genic (containing promoter, terminator, and terminator, orange) R-loop levels on total R-loop regions, presented by histograms. Mean of intergenic (blue) or genic (orange) R-loop log₂ fold change was shown as vertical line. (C) GO categories of the upregulated DRGs by RNaseH1^{D209N} compared with the control. (D) GO categories of the downregulated DRGs by RNaseH1^{D209N} compared with the control. (E) Statistics of Prom-/Gb-/Term-concurrently changed genes shown in Fig. 3D with up- or downregulated RNA levels, sorted by RNA clusters shown in Fig. 1D. (F) Intersections of ATAC peaks. Left, MEFs and iPSCs. Right, RNaseH1^{D209N} and Flag on day 7. The size of the genomic regions covered by peaks was shown.

D

Fig. S5. Overexpression of RNaseH1 rescues the negative effect of inhibition of RNaseH1 loss on reprogramming. (A) qRT-PCR to test the expression of *RNaseH1* in MEFs reprogrammed with OSKM and retroviral infection of pMXs-Flag, RNaseH1, and control shLuci, RNaseH1 shRNA, on day 5 in iCD1 medium. Error bars correspond to means \pm SD (*P \leq 0.05, **P \leq 0.01, ***P \leq 0.001, two-tailed Student's *t* test). (B) Top: Oct4-GFP colony number of MEFs reprogrammed with OSKM and retroviral infection of pMXs-Flag, RNaseH1, and control shLuci, RNaseH1 shRNA, on days 5 and 7, respectively, in iCD1 medium. The retrovirus was added at the same time. Bottom: AP staining on day 5. Error bars correspond to means \pm SD (*P \leq 0.05, **P \leq 0.01, ***P \leq 0.001, two-tailed Student's *t* test). (C) qRT-PCR to test the expression of *RNaseH1* in MEFs reprogrammed with OSKM and retroviral infection of pMXs-Flag, RNaseH1, and RNaseH1^{D209N} on day 5 in iCD1 medium. Error bars correspond to means \pm SD (*P \leq 0.05, **P \leq 0.01, ***P \leq 0.001, twotailed Student's t test). (D) Top: Oct4-GFP colony number of MEFs reprogrammed OSKM and retroviral infection of pMXs-Flag, RNaseH1, and RNaseH1^{D209N} on day 7 in iCD1 medium. The retrovirus was added at the same time. Bottom: AP staining on day 5. Error bars correspond to means ± SD (*P \leq 0.05, **P \leq 0.01, ***P \leq 0.001, two-tailed Student's *t* test).

Fig. S6. Sox2 induces reprogramming by maintaining high level of R**loops.** (A) AP staining corresponding to Fig 4A. (B) AP staining corresponding to Fig. 4B. (C) AP staining of MEFs reprogrammed with OSKM and RNaseH1^{D209N} plus TetON-inducible Sox2, Oct4, Klf4 or c-Myc in iCD1 medium with 20, 50, 100, 500 ng/mL doxycycline. (D) Oct4-GFP colony number of MEFs reprogrammed with OSKM and RNaseH1^{D209N} plus TetON-inducible Sox2, Oct4, Klf4 or c-Myc in iCD1 medium with 20, 50, 100, 500 ng/mL doxycycline. (E) PCA analysis of RNA-seq signals in OSKM- and OKM-reprogrammed MEFs at the indicated time points during reprogramming. (F) Statistics of genes with expression changes under both conditions (OSKM/OKM, D9, shown in Fig 4H) with up- or downregulated RNA levels, denoted as MEF-specific genes (dark blue), iPSC-specific genes (tangerine), and other genes (gray). (G) Venn diagram showing the overlap of differential R-loop regions in OSKM/OKM D9 (yellow), RNaseH1^{D209N}/Flag D7 (green) from promoter (top), gene body (middle), or terminator (bottom) region. Counts of mutual or unique differential R-loop regions were shown. (H) Distribution of differential R-loop regions of RNaseH1^{D209N}/Flag, and OSKM/OKM. (I) Bar chart showing the peak size of differential R-loop regions of RNaseH1^{D209N}/Flag, and OSKM/OKM. The background peaks were used as a control.

Fig. S7. Sox2 is involved in regulation of R-loop. (A) Co-IP analysis of interaction between Sox2 and Dhx9. (B) Coomassie blue staining of purified recombinant mouse Sox2 and Ddx5, corresponding to Fig. 5F. M: marker. (C) The RNA/DNA + ssDNA substrate (25 nM) was incubated with increasing concentrations of deletions of Sox2 in the presence of Dhx9. The reaction was detected on a native polyacrylamide gel. (D) Schematic diagrams of deletions of Sox2 expression constructs. (E) Coomassie blue staining showing different deletions of recombinant mouse Sox2. (F) AP staining of MEFs reprogrammed with OKM, OKMS₁₈₀ or OSKM plus RNaseH1^{D209N} in iCD1 medium on day 4 (top). Quantified number of AP positive colonies (botom). (G) Western blot to detect protein level of Dhx9, Ddx5 and Sox2 in TetON-RNaseH1 mESCs before and after adding 2 μg/mL doxcycline. (H) DRIP-qPCR to monitor R-loop level at the selected sites modulated by dCas9-RNaseH1 during reprogramming. (I) DRIP-qPCR to monitor R-loop level at the selected sites modulated by dCas9-RNaseH1 D209N.

Table S1. Sequences of shRNA and sgRNA Oligos.

pSuper- shRNaseH1#1	GATCCCCGCCTTTGTCAGGAGCTCTTCATTCAAGAGATGAAGAGCTCCTG ACAAAGGCTTTTTA
	AGCTTAAAAAGCCTTTGTCAGGAGCTCTTCATCTCTTGAATGAA
pSuper- shRNaseH1#2	GATCCCCGAGAACAAGTACAGGGAAATTCAAGAGATTTCCCTGTACTTGTT CTCTTTTA
	AGCTTAAAAAGAGAACAAGTACAGGGAAATCTCTTGAATTTCCCTGTACTT GTTCTCGGG

shRNA

sgRNA

Timm13	F	CACCGTATTGTACGCATGCGCAGCG
	R	AAACCGCTGCGCATGCGTACAATAC
Ndufb6	F	CACCGAGGATAGACTAGTATGAGTC
	R	AAACGACTCATACTAGTCTATCCTC
Tmem205	F	CACCGGGCATAATCCCCGTTCCACG
	R	AAACCGTGGAACGGGGATTATGCCC
Zic3	F	CACCGGAGACCCCCTAGGCGCTACC
	R	AAACGGTAGCGCCTAGGGGGTCTCC
Eras	F	CACCGAGACTGGGGGTTTGATCGCT
	R	AAACAGCGATCAAACCCCCAGTCTC
Lonrf1	F	CACCGCCTCCACATACTCCGAAAAG
	R	AAACCTTTTCGGAGTATGTGGAGGC

Table S2. Primers Used for qPCR.

Application	Species	Gene	Forward primer(5'-3')	Reverse primer(5'-3')
RT-qPCR	Mouse	RNaseH	CCAGGCCACCCCTTAAATGT	CCAGCCCTGAACCCAGTTAG
RT-qPCR	Mouse	Gapdh	AACTTTGGCATTGTGGAAGGGCTC	ATTGGCAGCACCAGTGGATGCAGGGA
RT-qPCR	Mouse	Brca1	ATGAGCTGGAGAGGATGCTG	CTGGGCAGTTGCTGTCTTCT
RT-qPCR	Mouse	Brca2	TCTGCCACTGTGAAAAATGC	TCAAGCTGGGCTGAAGATT
RT-qPCR	Mouse	Bard1	TGGTATGCCAGCCAGGAAAA	CTTCATGCAACGGTGTCCA
RT-qPCR	Mouse	Chk1	TGCATTTGGATTCCTGTGGC	AGTTGAACTTCTCCATAGGCAC
RT-qPCR	Mouse	Atr	TGCAACAAATCGGTCGATGG	GTCATGATTCGCATGGGCAC
RT-qPCR	Mouse	Rpa2	CAGCTTGGTGGAGTCTGCTT	TAGTCACAATCTGCGGTGGC
DRIP-qPCR	Mouse	Sox2	AACCAGAAGAACAGCCCGGA	CTCCTGGGCCATCTTACGC
DRIP-qPCR	Mouse	Esrrb	AGGAGCCATTCCATCCCATT	ATCCCAACCCTCCCTCTACA
DRIP-qPCR	Mouse	Tfcp2I1	GTCAGTGTTCAGAGCGAGGA	AGTTGCTCAGGGCGAGATTG
DRIP-qPCR	Mouse	Nr5a2	AAGGGAAGTGACAGCCCAAG	ACCCAGTAGGCAAAACGCAT
DRIP-qPCR	Mouse	Lin28a	GCCTACACCTTACTGGGCAC	AGTTGACCGGTAGTTGGGTG
DRIP-qPCR	Mouse	Lrrc2	CCCTTGCCTGAGAGCAGATT	TGTTTGCTTGCTTGTTCGCT
DRIP-qPCR	Mouse	Slc24a3	CCTCTTCTCTGACTATTGGTGCAT	TCGAATGTAGCCCCAGTCCT
DRIP-qPCR	Mouse	Lvrn	CGTCCTCAGTGTCCATCCATC	GGATGAGCAGAAGTAGGGCT
DRIP-qPCR	Mouse	Pcdh9	TCACAACATCATGCCATTCATC	GAGGCCTACCTAACCCTTCAC
NRO-RT-qPC	F Mouse	Tdrd12	ACAGAGGATGCAAGCTGGTC	ATGGTGCAACCTGTATGGGG
NRO-RT-qPC	F Mouse	Rif1	TGAGAGGCACGTGAAACGAT	AAAATACCGCCCTTCAGCCT
NRO-RT-qPC	F Mouse	Gapdh	CCCTTGATATGGTGCAACCTG	CACAAACATGGGGGCATCG

Table S3. Lists of S9.6 co-IP interactome.

Gene Name	Ensembl ID
Rpl18	ENSMUSG0000059070
Mta2	ENSMUSG0000071646
lghv1-56	ENSMUSG0000094862
Ănrnpl	ENSMUSG0000015165
Atp50	ENSMUSG0000022956
Prpf8	ENSMUSG0000020850
Snip1	ENSMUSG0000050213
llf3 [′]	ENSMUSG0000032178
Rps6	ENSMUSG0000028495
Cct3	ENSMUSG0000001416
Elavl1	ENSMUSG0000040028
Tardbp	ENSMUSG0000041459
Rps17	ENSMUSG0000061787
Smchd1	ENSMUSG0000024054
Rpl23	ENSMUSG0000071415
Abce1	ENSMUSG0000058355
Chd4	ENSMUSG0000063870
Rnl6	ENSMUSG0000029614
Mcm3	ENSMUSG0000041859
Rns4x	ENSMUSG0000031320
I Itn20	ENSMUSG0000004356
Kifc1	ENSMUSG0000079553
Rfc2	ENSMUSG0000023104
Atn5f1h	ENSMUSG0000025393
I 1td1	ENSMUSG0000087166
Bop1	ENSMUSG0000022557
Snrnp70	ENSMUSG0000063511
Rps3	ENSMUSG0000030744
Snrnp200	ENSMUSG0000003660
Fxr1	ENSMUSG0000027680
Rpl3	ENSMUSG0000060036
Gatad2b	ENSMUSG0000042390
Brd4	ENSMUSG0000024002
Rbmxl1	ENSMUSG0000037070
Ncl	ENSMUSG0000026234
Tuba1b	ENSMUSG0000023004
Hmga1	ENSMUSG0000046711
Ddx21	ENSMUSG0000020075
Rps20	ENSMUSG0000028234
Atad3	ENSMUSG0000029036
Vdac1	ENSMUSG0000020402
Hspa1l	ENSMUSG0000007033
Srp72	ENSMUSG0000036323
Nono	ENSMUSG0000031311
Utp15	ENSMUSG0000041747
Hnrnpr	ENSMUSG0000066037
Wdr75	ENSMUSG0000025995
Rrs1	ENSMUSG0000061024
Rpl13a	ENSMUSG0000074129
Dnajc2	ENSMUSG0000029014
Smc3	ENSMUSG0000024974
Supt16	ENSMUSG0000035726

Eif4a1	ENSMUSG00000059796
Msh6	ENSMUSG0000005370
Top2a	ENSMUSG0000020914
Krt75	ENSMUSG0000022986
Pn/32	ENSMUSC0000057841
npisz Uriara?	
Uqcrc2	ENSMUSG00000030884
Utp6	ENSMUSG00000035575
Imp3	ENSMUSG0000032288
Rpl17	ENSMUSG0000062328
Ġm8994	ENSMUSG0000094973
Dhy15	ENSMUSG0000029169
Etai?	ENSMUSC0000020706
risjs Dalz	
Rpi7	ENSMUSG0000043716
Nvl	ENSMUSG00000026516
Srrm2	ENSMUSG0000039218
Ptbp1	ENSMUSG0000006498
Fef1a	ENSMUSG0000071644
Lltn18	ENSMUSC0000054079
Uprou/2	
niinpuiz	ENSINUSG00000071059
Mrpi11	ENSMUSG0000024902
Tra2a	ENSMUSG0000029817
Rpl36	ENSMUSG0000057863
Rps16	ENSMUSG0000037563
Acsl3	ENSMUSG0000032883
$\Delta tn 5c1$	ENSMUSC0000025781
Non2	
Nopz	ENSINUSG00000036279
Vdac2	ENSMUSG0000021771
Hist2h4	ENSMUSG00000091405
Srsf7	ENSMUSG0000024097
Kif2c	ENSMUSG0000028678
Alvref	ENSMUSG0000025134
Glvr1	ENSMUSC0000022536
Unrople	
пппрк	ENSINUSG00000021540
Kpna2	ENSMUSG0000018362
Utp3	ENSMUSG00000070697
Nat10	ENSMUSG00000027185
Rps27l	ENSMUSG0000036781
Pak1ip1	ENSMUSG0000038683
n16	ENSMUSG0000030483
Krt10	
EIIO	ENSMUSG0000027613
Atp5f1a	ENSMUSG00000025428
Raly	ENSMUSG00000027593
Rpl10	ENSMUSG0000008682
Ġatad2a	ENSMUSG0000036180
Sanl1	ENSMUSG0000020097
Din1	
F 11 14	ENSINUSG00000079480
IVICM2	ENSMUSG0000002870
Ncapg	ENSMUSG00000015880
Dnmt1	ENSMUSG0000004099
Rbmxl2	ENSMUSG0000073894
Smc2	ENSMUSG0000028312
lakc	ENSMUSG0000076609
Igro	
ISYZUIZ	
PND2	ENSMUSG0000004264
Noc2I	ENSMUSG0000095567

Hnrnpm	ENSMUSG0000059208
Ddx42	ENSMUSG0000020705
Srsf5	ENSMUSG0000021134
Fef2	ENSMUSG0000034994
Ddy27	ENSMUSG0000017999
Rns2	ENSMUSC00000017555
Npsa Upropo1	
пппрат	ENSIVIUSG00000046434
Anin	ENSMUSG0000036777
Fcf1	ENSMUSG0000021243
Apc2	ENSMUSG0000020135
Poldip3	ENSMUSG0000041815
Rfc3	ENSMUSG0000033970
Gtphp4	ENSMUSG0000021149
Vars	ENSMUSG0000007029
Fif2a	ENSMUSC0000027810
LIZA	
nzaly Maaa	ENSINUSG00000015937
MOCS3	ENSMUSG0000074576
GAPDH	ENSMUSG00000057666
Phf5a	ENSMUSG0000061360
Sf3a2	ENSMUSG0000020211
Rpl27a	ENSMUSG0000046364
Smpd4	ENSMUSG0000005899
Ddx5	ENSMUSG0000020719
Hnrnnc	ENSMUSC0000020713
Hono ⁹	
nspao Del04	
Rpi21	ENSMUSG0000041453
Rps26	ENSMUSG0000025362
Ctcf	ENSMUSG0000005698
Rpl27	ENSMUSG0000063316
Rpl15	ENSMUSG0000012405
Rplp0	ENSMUSG0000067274
Ŵdr12	ENSMUSG0000026019
Snrnh	ENSMUSG0000027404
Hist1h2aa	ENSMUSG00000027404
Dnl7a	ENSMUSC000000000000
πριτά MomE	
	ENSINUSG0000005410
Dcar13	ENSMUSG0000022300
SIc25a3	ENSMUSG0000061904
Krr1	ENSMUSG0000063334
Sfxn1	ENSMUSG0000021474
Rpl34	ENSMUSG0000062006
Trim28	ENSMUSG0000005566
Snrnd3	ENSMUSG0000020180
Vim	ENSMUSG0000026728
Mah2	ENSMUSC0000020720
Adap	
Aurip	ENSINUSG00000051149
Altm1	ENSMUSG0000036932
Rpf2	ENSMUSG0000038510
Slc25a4	ENSMUSG0000031633
Rrp12	ENSMUSG0000035049
Prpf40a	ENSMUSG0000061136
Hells	ENSMUSG0000025001
Srrt	ENSMUSG0000037364
Dhx8	ENSMUSG0000034931
Slc16a1	ENSMI ISC0000032002
Unrnnh ¹	
пппрп1	ENSIVIUSGUUUUUUU/850

Ruvbl1	ENSMUSG0000030079
Ssrp1	ENSMUSG0000027067
Nifk	ENSMUSG0000026377
Ass1	ENSMUSG0000076441
$mKI\Lambda\Lambda003\Lambda$	ENSMUSC0000047126
Dmo1	
DITIST	
Ran	ENSMUSG0000029430
RpI30	ENSMUSG0000058600
Tufm	ENSMUSG0000073838
Mki67	ENSMUSG0000031004
Ddx18	ENSMUSG0000001674
Ddx3x	ENSMUSG0000000787
Rnl22	ENSMUSG0000028936
Fzh1	ENSMUSG00000020000
LZIII	
ΠΠΠΡΙ	
Warso	ENSMUSG00000038299
Spout1	ENSMUSG0000039660
Prpf19	ENSMUSG0000024735
Wdr46	ENSMUSG0000024312
Rpl10a	ENSMUSG0000037805
Ġm10036	ENSMUSG0000058064
Rns8	ENSMUSG0000047675
Hist1h2ha	ENSMUSC0000069307
Fifad	
Elisu	ENSIVIUSG00000010554
PhD	ENSI/05G00000038845
Rpi4	ENSMUSG0000032399
Fyttd1	ENSMUSG0000022800
Rpl18a	ENSMUSG0000045128
Tbl3	ENSMUSG0000040688
Mcm6	ENSMUSG0000026355
Rpl8	ENSMUSG0000003970
Hnrnna2b1	ENSMUSG0000004980
Vhv1	ENSMUSG0000028639
Tmno	ENSMUSC0000020035
Thipu Dook1	
RACKI	ENSIVIUSG00000020372
Hoacz	ENSMUSG0000019777
Rps23	ENSMUSG0000049517
Actc1	ENSMUSG0000068614
Rps27a	ENSMUSG0000020460
Ddx51	ENSMUSG0000029504
Abcf1	ENSMUSG0000038762
Orc1	ENSMUSG0000028587
Trin12	ENSMUSG0000026219
Ibr	ENSMUSG00000020210
Acth	ENSMUSC0000004000
ACID	ENSI/10500000029580
	ENSIVIUSG00000024590
Pacall	ENSMUSG0000025047
Smarca4	ENSMUSG0000032187
Uhrf1	ENSMUSG0000001228
Slc25a5	ENSMUSG0000016319
Trap1	ENSMUSG0000005981
Utp14a	ENSMUSG0000063785
Pcbp1	ENSMUSG0000051695
Cnsf7	ENSMUSG0000034820
Mcm ¹	ENSMI ISC00000034020
NIGHT4 Drn 15	
RIPIS	ENSIVIUSG0000001305

Rpl19	ENSMUSG0000017404
Zc3h18	ENSMUSG0000017478
Baz2a	ENSMUSG0000040054
Rfc1	ENSMUSG0000029191
Srp68	ENSMUSG0000020780
Imp4	ENSMUSG0000026127
Tdh	ENSMUSG0000021953
Dhx9	ENSMUSG0000042699
Smarca5	ENSMUSG0000031715
Imp4 Tdh Dhx9 Smarca5	ENSMUSG0000026127 ENSMUSG00000021953 ENSMUSG00000042699 ENSMUSG00000031715