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Supplementary Discussion

Inflated false positive rates of some standard methods

Two potential reasons why some differential abundance (DA) analysis methods for microbiome
data result in inflated positive rates, and hence inflated false discovery rates (FDR), are as
follows:

(1) The test statistic may not be designed for testing the hypothesis of interest. For example,
the test statistic may be designed for testing hypothesis regarding relative abundance but
is used for testing absolute abundance.

(2) Data are not properly normalized to account for bias due to variability in sampling frac-
tions.

In the following we discuss some commonly used methods in the literature, namely, Wilcoxon
rank sum test (with and without TSS)[1], DESeq2 [2], edgeR [3], metagenomeSeq [4]. We begin
with the following simple lemma.

Lemma 0.1. Suppose, for a taxon i, E(β̂i) = βi+δi, and ŜE(β̂i) is Op(n
−1/2). Further assume

that, under H0, βi = 0, δi 6= 0 and

Tβi =
β̂i − βi
ŜE(β̂i)

→d N(
δi

SE(β̂i)
, 1).

Suppose z1−α/2 is (1−α/2)×100 percentile of standard normal distribution then the probability
of Type I error associated with the critical region:

|Tβi=0| ≥ z1−α/2

increases with sample size. Equivalently, the p-value based on |Tβi=0| stochastically decreases
with n.

Proof. Note that under the null hypothesis we have Tβi is centered at δi. Since δi 6= 0, and

ŜE(β̂i) grows at the rate of
√
n, therefore |Tβi | stochastically increases with n, and p-value

decreases stochastically. This results in inflated Type I error.

In the following sections, suppose taxon i is not differentially abundant between two ecosystems
or two groups. For simplicity of exposition, we assume the sample sizes are equal between the
two groups.

Wilcoxon rank-sum test with no normalization

Suppose for k = 1, . . . , n,Oi1k ∼iid Fi1 and Oi2k ∼iid Fi2. Under no normalization, the Wilcoxon
rank-sum test aim to test the following hypotheses

H0 : Fi1 = Fi2

H1 : Fi1 6= Fi2

The test statistic is given by:

U =
1

n2

n∑
k=1

n∑
k′=1

I(Oi1k ≤ Oi2k′). (1)
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Asymptotically, under the null hypothesis we know that:

U ∼ AN(
1

2
,

1

6n
). (2)

The basic assumption made by the above U statistic is that under the null hypothesis Oi1k
is equally likely to be small or large compared to Oi2k. Thus the indicator random variable
I(Oi1k ≤ Oi2k) has the same distribution as I(Oi2k ≤ Oi1k). Note that in the existing im-
plementation of these tests the samples are not normalized for unequal sampling fractions.
Therefore under the null hypothesis, the U statistic is not centered at 1

2 . Hence the Type I
error is not controlled at α according to Lemma 0.1.

Wilcoxon rank-sum test with TSS

TSS normalization transforms the absolute abundance table into the relative abundance table.
Using these relative abundance data, for k = 1, . . . , n, ri1k ∼iid Gi1 and ri2k ∼iid Gi2, the
Wilcoxon Rank-Sum test is used for testing the following hypotheses:

H0 : Gi1 = Gi2

H1 : Gi1 6= Gi2.

Under the above normalization, even if the expected absolute abundance of a taxon is same
between two ecosystems, its relative abundances may not be same. Thus, testing the null
hypothesis of equality of relative abundance of a taxon between two ecosystems is not equivalent
to the null hypothesis that the absolute abundances are equal. Furthermore, the Wilcoxon rank-
sum test applied directly to the relative abundance data ignores the compositional structure.
Consequently, asymptotically the Type I error will not be controlled as indicated in Lemma 0.1.

DESeq2

DESeq2 assumes a negative-binomial model for absolute abundances. Thus, the observed count
data and the corresponding parameters are modeled as follows:

Oijk ∼ NB(sjkqij , φi)

sjk = median
i:OR

i 6=0

Oijk

ORi

log qij = βi0 + βi1I(j = 1), j = 1, 2

β̂i1 = arg max
βi1

(

2∑
j=1

n∑
k=1

log fNB(Oijk; sjkqij , φi) + Λ(β))

(3)

where

(1) ORi = (
∏2
j=1

∏n
k=1Oijk)

1
2n ,

(2) Λ(β) = −(
β2
i0

2σ2
0

+
β2
i1

2σ2
1
),

(3) σ20, σ
2
1 are prior variances for βi0, βi1, respectively.
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DESeq2 first scales the OTU table by the normalization factor sjk, and then tests for differ-
ential abundance, consequently it does not take into account the uncertainty associated with
sjk.

Recall from the regression framework of ANCOM-BC that:

E(Oijk) = cjkθij

E(yijk) = djk + µij
(4)

Compared to (3), DESeq2 estimates the sampling fraction cjk by sjk, i.e. ĉMED
jk = sjk and

therefore d̂MED
jk = log sjk. Thus, we have

d̂MED
jk = median

i:OR
i 6=0

(logOijk −
1

2n

2∑
j=1

n∑
k=1

logOijk)

= median
i:OR

i 6=0
(yijk −

1

2n

2∑
j=1

n∑
k=1

yijk)

= median
i:OR

i 6=0
(djk + µij + εijk −

1

2n

2∑
j=1

n∑
k=1

yijk)

= median
i:OR

i 6=0
(djk − d̄·· + µij − µ̄i. + εijk − ε̄i··)

= djk − d̄·· + median
i:OR

i 6=0
(µij − µ̄i· + εijk − ε̄i··)

:= djk − d̄·· + µajkj − µ̄ajk· + εajkjk − ε̄ajk··.

(5)

In the expressions ajk denotes the index that corresponds to the taxon for which median
i:OR

i 6=0
(µij −

µ̄i· + εijk − ε̄i··) = µajkj − µ̄ajk· + εajkjk − ε̄ajk··. Averaging over all samples k = 1, 2, . . . , n in
group j, we get

¯̂
dMED
j· = d̄j· − d̄·· + µ̃·(j)j − µ̃·(j)· + ε̃·(j)j· − ε̃·(j)··. (6)

Since each subject k in group j, may potentially have a different taxon that yields the median
value µajkj − µ̄ajk· + εajkjk − ε̄ajk··, in the above expression x̃ represents the mean of variable x
taken over the suitable subset of taxa. Secondly, the notation x·(j) represents the mean taken
within group j.

The test statistic for DESeq2 is of the form:

WDESeq2
i =

µ̂i1 − µ̂i2 − δ̂MED

SE(µ̂i1 − µ̂i2 − δ̂MED)
(7)

The MED estimator of the bias term is:

δ̂MED :=
¯̂
dMED
1· − ¯̂

dMED
2·

= d̄1· − d̄2· + {µ̃·(1)1 − µ̃·(1)· + ε̃·(1)1· − ε̃·(1)··} − {µ̃·(2)2 − µ̃·(2)· + ε̃·(2)2· − ε̃·(2)··}
= δ + {µ̃·(1)1 − µ̃·(1)· + ε̃·(1)1· − ε̃·(1)··} − {µ̃·(2)2· − µ̃·(2)· + ε̃·(2)2· − ε̃·(2)··}

(8)

Note that E(ε̃·(j)j·−ε̃·(j)··) = 0. However, unless ES(µ̃·(1)1−µ̃·(1)·) = 0 and ES(µ̃·(2)2−µ̃·(2)·) = 0,
where the subscript S denotes the collection of all suitable subsets of taxa {1, 2, . . . ,m}, the
MED estimator does not estimate the bias term in the null hypothesis unbiasedly, i.e.

E(δ̂MED) 6= δ. (9)
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Thus, under the null hypothesis

E(µ̂i1 − µ̂i2 − δ̂MED) 6= 0 (10)

As seen from the figures presented in the main text as well as this supplementary text, the nor-
malization method used in DESeq2 works sometimes (Supplementary Fig. 2, 8), and sometimes
fails to eliminate the bias due to variability in the sampling fraction (Fig. 3, Supplementary
Fig. 1). Consequently, the test statistic used in DESeq2 intrinsically tests a biased hypothesis
and hence from Lemma 0.1, it can potentially inflate the false positive rate.

edgeR

Similar to DESeq2, edgeR assumes a negative-binomial distribution for absolute abundance
data:

Oijk ∼ NB(O·jksjkpij , φi) = NB(Mjkpij , φi)

log pij = βi0 + βi1I(j = 1), j = 1, 2
(11)

where

(1) sjk = normalization factor,

(2) Mjk = effective library size, which is the product of original library size and normalization
factor,

(3) pij is the relative abundance of taxon j in experimental group j.

The upper-quartile (UQ) normalization used in edgeR is described as follows. Let

ĉUQ
jk = sjk = UQ

i:Oijk>0
(
Oijk
O·jk

)

d̂UQ
jk = log ĉUQ

jk ,

(12)

where UQ(X) is the upper quartile of X. Then

d̂UQ
jk = UQ

i:Oijk>0
(logOijk − logO·jk)

(Apply Taylor’s expansion)

≈ UQ
i:Oijk>0

(yijk − log cjkθ·j −
1

cjkθ·j
(O·jk − cjkθ·j))

= UQ
i:Oijk>0

(djk + µij + εijk − djk − log θ·j −
O·jk
cjkθ·j

+ 1)

= 1− log θ·j −
O·jk
cjkθ·j

+ UQ
i:Oijk>0

(µij + εijk)

:= 1− log θ·j −
O·jk
cjkθ·j

+ µajkj + εajkjk

(13)

Similar to DESeq2, for the kth sample in the jth group, ajk represents the index for the taxon
such that UQ

i:Oijk>0
(µij + εijk) = µajkj + εajkjk.
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Averaging over all sample k = 1, 2, . . . n, we get

¯̂
dUQ
j· = 1− log θ·j − x̄j· + µ̃·(j)j + ε̃·(j)j· (14)

As noted earlier, since each subject k in group j, may potentially have a different taxon that
yields the upper quartile value µajkj + εajkjk, in the above expression x̃ represents the mean
of variable x taken over the suitable subset of taxa. Secondly, the notation ·(j) represents the

mean taken within group j. x̄j· is the average of
O·jk
cjkθ·j

over group j.

Thus, the UQ estimator of the bias term in the null hypothesis is

δ̂UQ :=
¯̂
dUQ
1· −

¯̂
dUQ
2·

= (log θ·2 − log θ·1) + (x̄2· − x̄1·) + (µ̃·(1)1 − µ̃·(2)2) + (ε̃·(1)1· − ε̃·(2)2·)
(15)

Note that E(ε̃·(1)1· − ε̃·(2)2·) = 0. However, it is clear that the UQ estimator does not estimate

the bias term in the null hypothesis unbiasedly, i.e. E(δ̂UQ) 6= δ = d̄1· − d̄2·.
Thus the UQ normalization method does not eliminate (even asymptotically) the bias due to

variability in the sampling fraction. Consequently, the test statistic intrinsically tests a biased
hypothesis and hence from Lemma 0.1, it inflates the false positive rate.

Comparing the model used in edgeR (11) with regression framework of ANCOM-BC, we note
that:

E(Oijk) = Mjkpij (16)

Therefore, it is more reasonable to define the estimated sampling fraction by the effective library
size. For instance, the effective library size using UQ (ELib-UQ):

ĉELib-UQ
jk = Mjk = O·jksjk

d̂ELib-UQ
jk = log ĉELib-UQ

jk

(17)

Hence, we have:

d̂ELib-UQ
jk = UQ

i:Oijk>0
(logOijk)

= UQ
i:Oijk>0

(yijk)

= UQ
i:Oijk>0

(djk + µij + εijk)

= djk + µajkj + εajkjk

(18)

As before, for the kth sample in the jth group, ajk represents the index for the taxon such that
UQ

i:Oijk>0
(djk + µij + εijk) = djk + µajkj + εajkjk.

Averaging over all sample k = 1, 2, . . . n, we get

¯̂
dELib-UQ
j = d̄j· + µ̃·(j)j + ε̃·(j)j· (19)

Since each subject k in group j may potentially have a different taxon that yields the upper
quartile µajkj + εajkjk, in the above expression x̃ represents the mean of variable x taken over
the suitable subset of taxa. Secondly, the notation ·(j) represents the mean taken within group
j.
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Thus, the ELib-UQ estimator of the bias term in the null hypothesis is:

δ̂ELib-UQ :=
¯̂
dELib-UQ
1· − ¯̂

dELib-UQ
2·

= d̄1· − d̄2· + (µ̃·(1)1 − µ̃·(2)2) + (ε̃·(1)1· − ε̃·(2)2·)
= δ + (µ̃·(1)1 − µ̃·(2)2) + (ε̃·(1)1· − ε̃·(2)2·)

(20)

Note that E(ε̃·(1)1· − ε̃·(2)2·) = 0. However, unless the average abundance of all 75th percentile
taxa is same between the two ecosystems, i.e. µ̃·(1)1 − µ̃·(2)2 = 0, the ELib-UQ estimator does

not estimate the bias term in the null hypothesis unbiasedly, i.e. E(δ̂ELib-UQ) 6= δ.
Thus the ELib-UQ normalization method used in edgeR does not always eliminate the bias

due to variability in the sampling fraction. Consequently, the test statistic used in edgeR
intrinsically tests a biased hypothesis and hence from Lemma 0.1, it inflates the false positive
rate.

We skip the proofs for TMM and ELib-TMM since the arguments are similar.

metagenomeSeq

Suppose the zero-inflated Gaussian (ZIG) mixture model is used in metagenomeSeq. The frame-
work can be summarized as

yijk = log2(Oijk + 1)

fzig(yijk;O·jk, µij , σ
2
ij) = πjk(O·jk)I{0}(yijk) + (1− πjk(O·jk))φ(yijk;µij , σ

2
ij)

E(yijk|j = 1) = πjk · 0 + (1− πjk) · (βi0 + ηi log2(
sl̂jk + 1

N
) + βi1I(j = 1))

(21)

where

(1) N = an approximately choose normalization constant,

(2) O·jk =
∑m

i=1Oijk is the library size for sample k in group j,

(3) sl̂jk =
∑

i:Oijk≤ql̂jk
Oijk,

(4) q l̂jk = l̂th quantile of sample k in group j.

l̂ is determined by the smallest l that satisfies

∆l+1
q −∆l

q ≥ 0.1∆l
q (22)

where
∆l
q = medianjk|qljk − q̄l|

q̄l = medianjkq
l
jk

(23)

The null hypothesis under metagenomeSeq is as follows:

H0 : βi1 = 0

H1 : βi1 6= 0

For simplicity of exposition, suppose πjk = 0. Comparing the ZIG model (21) with the regression
framework of ANCOM-BC, we define:

d̂CSS
jk = log(sl̂jk + 1) (24)
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Hence,

d̂CSS
jk = log(sl̂jk + 1)

≈ log(sl̂jk) (sl̂jk is much larger than 1)

≈ log(E(sl̂jk)) +
1

E(sl̂jk)
(sl̂jk − E(sl̂jk)) (Taylor’s expansion)

= log(
∑

i:Oijk≤ql̂jk

cjkθij) +
sl̂jk

E(sl̂jk)
− 1

= djk + log(
∑

i:Oijk≤ql̂jk

θij) +
sl̂jk

E(sl̂jk)
− 1

:= djk + xajkj + zjk − 1

(25)

As before, for the kth sample in the jth group, ajk represents the index such that log(
∑

i:Oijk≤ql̂jk
θij) =

xajkj , and zjk :=
sl̂jk

E(sl̂jk)
.

Averaging over all sample k = 1, 2, . . . n, we get

¯̂
dCSS
j· = dj· + x̃·(j)j + z̄j· − 1 (26)

Since each subject k in group j, may potentially have a different total mean absolute abundance
up to the l̂th percentile, in the above expression x̃ represents the mean of variable x taken over
the suitable subset of taxa. Secondly, the notation ·(j) represents the mean taken within group
j. z̄j· is the average of zjk.

Thus, the CSS estimator of the bias term in the null hypothesis is:

δ̂CSS :=
¯̂
dCSS
1· −

¯̂
dCSS
2·

= d̄1· − d̄2· + (x̃·(1)1 − x̃·(2)2) + (z̄1· − z̄2·)
= δ + (x̃·(1)1 − x̃·(2)2) + (z̄1· − z̄2·)

(27)

Note that unless x̃·(1)1 − x̃·(2)2 = 0, which means the sum up to l̂th percentile of the mean
absolute abundance is the same between two groups, the CSS estimator does not estimate the
bias term in the null hypothesis unbiasedly, i.e. E(δ̂CSS) 6= δ.

Therefore, although metagenomeSeq directly tests for differential absolute abundance, there
is a systematic bias in estimating sampling fractions. Again, according to Lemma 0.1, it suffers
from inflated FDR as well.
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Residual analysis of normalization methods for differential sampling fractions

Although not explicitly stated, each normalization method available in the literature, such as the
Cumulative-Sum Scaling (CSS) implemented in metagenomeSeq [4], Median (MED) in DESeq2
[2], Upper Quartile (UQ), Trimmed Mean of M-values (TMM), Total-Sum Scaling (TSS), as
well as the modifications of UQ and TMM, denoted by ELib-UQ and ELib-TMM used in edgeR
[3], that account for “Effective Library size” [5], attempt to normalize the data for variability
in sampling fractions across samples. In this section we describe a simple method to evaluate
the performance of some of these available normalization methods, along with our proposed
method in ANCOM-BC.

Suppose we have two experimental groups with balanced sample size, for each normalization
method s, sample k = 1, 2, . . . , n, in the jth group, j = 1, 2, let the (raw) residual be denoted
by

rsjk = d̂sjk − djk. (28)

Then r̄sj· =
¯̂
dsj· − d̄j·, therefore, r̄s1· − r̄s2· = (

¯̂
ds1· −

¯̂
ds2·)− (d̄1· − d̄2·). Since residuals generated by

each normalization method will have their own center, to align the box plot of residuals at the
same level, we center the raw residuals by

rs∗jk = rsjk − r̄s·· = d̂sjk − djk −
¯̂
ds·· + d̄··. (29)

and make box plots using these (centered) residuals. Thus, if the normalization method is
effective then there should be no systematic pattern among the residuals by the experimental
groups. Otherwise, the normalization method is not successfully eliminating the bias due to
variability in sampling fractions.

Based on our simulated data (Fig. 3, Supplementary Fig. 1, 2), as expected ANCOM-BC
seems to successfully eliminate the bias induced by the differences in the sampling fractions
between two experimental groups. For ANCOM-BC, the samples from the two groups (circles
and triangles) are nicely intermixed with small variability of residuals. Consistent with our
observations in the previous section, this is not always the case with other methods. For other
methods, the group labels are not randomly distributed around zero but they are clustered by
the group label (Fig. 3, Supplementary Fig. 1). This suggests that the existing normalization
methods do not eliminate the systematic bias introduced by the differences in the sampling
fractions.

Estimators of sampling fractions by different normalization methods are summarized in Sup-
plementary Table 7.
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Compositional structure of RNA-Seq data

Similar to microbiome data, RNA-Seq data are intrinsically compositional [6, 7]. This is due to
the limitation of high-throughput sequencing (HTS) experiments. The sequencing instruments
can deliver reads only up to their capacity, which is a fixed number of slots that are able to be
filled [8]. DESeq2 and edgeR try to get around with the compositional structure by scaling the
raw data using some normalization factors. For instance, as stated in the user manual of edgeR
[5], the authors realize that the highly expressed genes can occupy a substantial proportion of
the library size, causing the remaining genes to be under-expressed in that sample. Therefore,
to address the “RNA composition” effect, they first scale the raw data and then replace the
original library size with the effect library size.

We thus conclude that both RNA-Seq data and microbiome data are compositional. Based
on our extensive simulation studies and real data analyses, we believe the most proper way to
deal with the compositional effect is by estimating and correcting for the difference of sampling
fractions directly.
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Supplementary Notes

Simulation settings

Denote M0 = the set of non-differentially abundant taxa, M1 = the set of differentially abun-
dant taxa,M1 =Mc

0, T0 =the set of non-differentially abundant taxa identified by DA analyses,
T1 =the set of differentially abundant taxa identified by DA analyses, T1 = T c0 . See Supplemen-
tary Fig. 11-14 for simulation flowcharts.

Fig. 3

(a) Nominal level = 0.05

(b) Number of simulations = 1

(c) Sample size: n1 = 30, n2 = 30

(d) Number of taxa: m = 500

(e) Proportion of differentially abundant taxa = 25%

(f) Proportion of structure zeros = 0% out of non-differentially abundant taxa

(g) Proportion of outlier zeros = 0% out of samples

(h) Mean absolute abundance in the ecosystem: θij ∼ GAM(a, 1), where a = 50 represents
low abundant taxa, a = 200 represents medium abundant taxa, and a = 10, 000 represents
high abundant taxa.

(i) The proportions of low, median, and high abundant taxa are set to be 60%, 30%, 10%

(ii) The effect size αi for differentially abundant taxa is set to follow U(0.1, 1)∪U(1, 10)
and apply to θi1. This leads to unbalanced microbial loads

(i) (Unobserved) absolute abundance in the ecosystem: Aijk|θij ∼ POI(θij)

(j) (Observed) absolute abundance in a sample:

(i) Balanced library size across groups: O·jk = pjk max(A·jk), where pjk ∼ 1
U(5,10)

(ii) Oijk ∼ BIN(O·jk, γijk =
Aijk

A·jk
)

Fig. 4

Simulation settings are the same as Fig. 3 except that:

(b) Number of simulations = 100

(c) Sample size

(i) n1 = 20, n2 = 30

(ii) n1 = n2 = 50

(d) Number of taxa: m = 1000

(e) Proportion of differentially abundant taxa = 5%, 15%, 25%
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(f) Proportion of structure zeros = 20% out of non-differentially abundant taxa

(g) Proportion of outlier zeros = 5% out of samples

(j) (Observed) absolute abundance in a sample:

(i) Balanced library size across groups: O·jk = pjk max(A·jk), where pjk ∼ 1
U(10,50)∪U(100,500)

(ii) Oijk ∼ BIN(O·jk, γijk =
Aijk

A·jk
)

Supplementary Fig. 1

Simulation settings are the same as Fig. 3 except that:

(j) (Observed) absolute abundance in a sample:

(i) Unbalanced library size across groups: O·jk = pjkA·jk, where pjk ∼ 1
U(5,10)

(ii) Oijk ∼ BIN(O·jk, γijk =
Aijk

A·jk
)

Supplementary Fig. 2

Simulation settings are the same as Fig. 3 except that:

(h) Mean absolute abundance in the ecosystem: θij ∼ GAM(a, 1), where a = 50 represents
low abundant taxa, a = 200 represents medium abundant taxa, and a = 10, 000 represents
high abundant taxa.

(i) The proportions of low, median, and high abundant taxa are set to be 60%, 30%, 10%

(ii) The effect size αi for differentially abundant taxa is set to be U(1, 10) and apply to
both θi1 and θi2. This leads to balanced microbial loads

Supplementary Fig. 3

Simulation settings are the same as Fig. 4 except that:

(j) (Observed) absolute abundance in a sample:

(i) Unbalanced library size across groups: O·jk = pjkA·jk, where pjk ∼ 1
U(10,50)∪U(100,500)

(ii) Oijk ∼ BIN(O·jk, γijk =
Aijk

A·jk
)

Supplementary Fig. 4

Simulation settings are the same as Fig. 4 except that:

(h) Mean absolute abundance in the ecosystem: θij ∼ GAM(a, 1), where a = 50 represents
low abundant taxa, a = 200 represents medium abundant taxa, and a = 10, 000 represents
high abundant taxa.

(i) The proportions of low, median, and high abundant taxa are set to be 60%, 30%, 10%

(ii) The effect size αi for differentially abundant taxa is set to be U(1, 10) and apply to
both θi1 and θi2. This leads to balanced microbial loads
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Supplementary Fig. 5

Simulation settings are the same as Fig. 4 except that:

(h) Mean absolute abundance in the ecosystem: θij is from the absolute abundance of soil
samples of global pattern data [9]

(i) (Unobserved) absolute abundance in the ecosystem: Aijk|θij = θij

Supplementary Fig. 6

Simulation settings are the same as Fig. 4 except that:

(c) Sample size: n1 = 5, n2 = 5 or n1 = 10, n2 = 10

Supplementary Fig. 7

Simulation settings are the same as Fig. 4 except that:

(e) Proportion of differentially abundant taxa = 50% and 75%

Supplementary Fig. 8

Simulation settings are the same as Fig. 3 except that:

(f) Proportion of structure zeros = 20% out of non-differentially abundant taxa

(g) Proportion of outlier zeros = 5% out of samples

(j) (Observed) absolute abundance in a sample:

(i) Balanced library size across groups: O·jk = pjk max(A·jk), where pjk ∼ 1
U(10,50)∪U(100,500)

Supplementary Fig. 9

Simulation settings are the same as Fig. 3 except that:

(e) Proportion of differentially abundant taxa = 5%, 15%, 25%

(f) Proportion of structure zeros = 20% out of non-differentially abundant taxa

(g) Proportion of outlier zeros = 5% out of samples

(j) (Observed) absolute abundance in a sample:

(i) Balanced library size across groups: O·jk = pjk max(A·jk), where pjk ∼ 1
U(10,50)∪U(100,500)

Supplementary Fig. 10

Simulation settings are the same as Fig. 4 except that BH procedure was implemented for every
differential abundance (DA) method for adjustments of multiple comparisons.
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Supplementary Table 4

Simulation settings are the same as Fig. 4 except that:

(d) Number of taxa: m = 10 or m = 50

(h) Mean absolute abundance in the ecosystem: θij ∼ GAM(a, 1), where

(1) When m = 10: a = 5, 000 represents low abundant taxa, a = 20, 000 represents
medium abundant taxa, and a = 1, 000, 000 represents high abundant taxa.

(2) When m = 50: a = 500 represents low abundant taxa, a = 2, 000 represents medium
abundant taxa, and a = 100, 000 represents high abundant taxa.

Supplementary Table 5

(a) Nominal level = 0.05

(b) Number of simulations = 100

(c) Sample size

(i) n1 = n2 = 20, n3 = n4 = 30

(ii) n1 = n2 = n3 = n4 = 50

(d) Number of taxa: m = 1000

(e) Proportion of differentially abundant taxa = 5%, 15%, 25%

(f) Proportion of structure zeros = 20% out of non-differentially abundant taxa

(g) Proportion of outlier zeros = 5% out of samples

(h) The reference group: group 1

(i) Mean absolute abundance in the ecosystem: θij ∼ GAM(a, 1), where a = 50 represents
low abundant taxa, a = 200 represents medium abundant taxa, and a = 10, 000 represents
high abundant taxa.

(i) The proportions of low, median, and high abundant taxa are set to be 60%, 30%, 10%

(ii) For group 2, 3, and 4, randomly choose which is/are differentially abundant with
group 1

(iii) The effect size αi:

• group 1 = 1

• group j, j ∈ {2, 3, 4} ∼ U(0.1, 1) ∪U(1, 10)

(j) (Unobserved) absolute abundance in the ecosystem: Aijk|θij ∼ POI(θij)

(k) (Observed) absolute abundance in a sample:

(i) Library size: O·jk = pjkA·jk, where pjk ∼ 1
U(10,50)∪U(100,500)

(ii) Oijk ∼ BIN(O·jk, γijk =
Aijk

A·jk
)
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Supplementary Table 6

Simulation settings are the same as Fig. 4 except that:

(c) Sample size: n1 = n2 = 50

15



Supplementary Figures

Supplementary Figure 1: Box plot of residuals between true sampling fraction and its estimate
for each sample.

In the box plot, the lower and upper hinges correspond to the first and third quartiles (the
25th and 75th percentiles). The median is represented by a solid line within the box. The
upper whisker extends from the hinge to the largest value (maxima) no further than 1.5 times
Interquartile Range (IQR, distance between the first and third quartiles) from the hinge, the
lower whisker extends from the hinge to the smallest value (minima) at most 1.5 times IQR of
the hinge. Data beyond the end of the whiskers are called ”outlying” points. N = 30 samples
examined over 2 experimental groups (denoted by circles and triangles) and the data points are
overlaid in each box. Text on the upper left corner indicates the color for each method and
variances are provided within parenthesis for each method. The variability in sampling fractions
is set to be moderate. ANCOM-BC has the smallest variance, while TMM and TSS have the
largest. Except ANCOM-BC, UQ, and TMM, all remaining methods show certain degree of
group separation of residuals. Compared to Fig. 3, the variance and separation of residuals
shown by ELib-UQ, ELib-TMM, CSS, and MED are slightly reduced since the variability of
sampling fractions is smaller in this case.
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Supplementary Figure 2: Box plot of residuals between true sampling fraction and its estimate
for each sample.

In the box plot, the lower and upper hinges correspond to the first and third quartiles (the
25th and 75th percentiles). The median is represented by a solid line within the box. The
upper whisker extends from the hinge to the largest value (maxima) no further than 1.5 times
Interquartile Range (IQR, distance between the first and third quartiles) from the hinge, the
lower whisker extends from the hinge to the smallest value (minima) at most 1.5 times IQR of
the hinge. Data beyond the end of the whiskers are called ”outlying” points. N = 30 samples
examined over 2 experimental groups (denoted by circles and triangles) and the data points are
overlaid in each box. Text on the upper left corner indicates the color for each method and
variances are provided within parenthesis for each method. The variability in sampling fractions
is set to be small. ELib-TMM has the smallest variance, while UQ has the largest. ANCOM-BC
competes well with ELib-TMM regarding the variance. Except TSS, the separation of residuals
shown by remaining methods is practically non-existent since both library sizes and microbial
loads are balanced, and the variability of sampling fractions is small in this case.
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Supplementary Figure 3: FDR and power comparisons using synthetic data from Poisson-
Gamma distributions.

The False Discovery Rate (FDR) and power of various differential abundance (DA) analyses
(two-sided) are shown in panel a and panel b, respectively. The variability in sampling fractions
is set to be moderate. The Y-axis denotes patterns of proportion of differentially abundant taxa.
The solid vertical line is the 5% nominal level of FDR, and the dashed vertical line denotes 5%
nominal level plus one standard error (SE). By default, ANCOM-BC implements Bonferroni
correction and other DA methods implement BH procedure to adjust for multiple comparisons.
Color and the name of the corresponding DA method are shown at the bottom within the graph.
Two simulation scenarios are considered: small and unbalanced data (n1 = 20, n2 = 30), as
well as large and balanced data (n1 = n2 = 50); number of simulations = 100. Results show
that ANCOM, ANCOM-BC and the simple Wilcoxon test control the FDR under the nominal
level (5%) while maintaining power comparable to other methods in this simulation setting.
Gaussian model version of metagenomeSeq has highly inflated FDR, while the Log-Gaussian
version has substantial loss of power, sometimes well below 5%. Other than ANCOM-BC and
ANCOM, as the sample size within each group increases, so does the FDR for all other existing
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methods.
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Supplementary Figure 4: FDR and power comparisons using synthetic data from Poisson-
Gamma distributions.

The False Discovery Rate (FDR) and power of various differential abundance (DA) analyses
(two-sided) are shown in panel a and panel b, respectively. The variability in sampling fractions
is set to be small. The Y-axis denotes patterns of proportion of differentially abundant taxa.
The solid vertical line is the 5% nominal level of FDR, and the dashed vertical line denotes 5%
nominal level plus one standard error (SE). By default, ANCOM-BC implements Bonferroni
correction and other DA methods implement BH procedure to adjust for multiple comparisons.
Color and the name of the corresponding DA method are shown at the bottom within the graph.
Two simulation scenarios are considered: small and unbalanced data (n1 = 20, n2 = 30), as well
as large and balanced data (n1 = n2 = 50); number of simulations = 100. Results show that
all DA analyses except Wilcoxon test with TSS control the FDR under the nominal level (5%)
while maintaining comparable power to each other in this simulation setting. The Log-Gaussian
version of metagenomeSeq has substantial loss of power, sometimes well below 5%. Other than
ANCOM-BC and ANCOM, as the sample size within each group increases, so does the FDR
for all other existing methods.
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Supplementary Figure 5: FDR and power comparisons using synthetic data from soil samples
of global pattern data [9].

The False Discovery Rate (FDR) and power of various differential abundance (DA) analyses
(two-sided) are shown in panel a and panel b, respectively. The variability in sampling fractions
is set to be large. The Y-axis denotes patterns of proportion of differentially abundant taxa.
The solid vertical line is the 5% nominal level of FDR, and the dashed vertical line denotes 5%
nominal level plus one standard error (SE). By default, ANCOM-BC implements Bonferroni
correction and other DA methods implement BH procedure to adjust for multiple comparisons.
Color and the name of the corresponding DA method are shown at the bottom within the graph.
Two simulation scenarios are considered: small and unbalanced data (n1 = 20, n2 = 30), as
well as large and balanced data (n1 = n2 = 50); number of simulations = 100. The results
are similar to Fig. 4a, b shown in the main text except the observation of increasing FDR for
DESeq2 and edgeR since the data no longer follow the Poisson-Gamma distribution.
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Supplementary Figure 6: FDR and power comparisons when sample size is small

The False Discovery Rate (FDR) and power of various differential abundance (DA) analyses
(two-sided) are shown in panel a and panel b, respectively. Data are generated from Poisson-
Gamma distributions. The variability in sampling fractions is set to be large. The Y-axis
denotes patterns of proportion of differentially abundant taxa. The solid vertical line is the
5% nominal level of FDR, and the dashed vertical line denotes 5% nominal level plus one
standard error (SE). By default, ANCOM-BC implements Bonferroni correction and other DA
methods implement BH procedure to adjust for multiple comparisons. Color and the name
of the corresponding DA method are shown at the bottom within the graph. Two simulation
scenarios are considered: n1 = n2 = 5 and n1 = n2 = 10; number of simulations = 100.
ANCOM-BC loses control of FDR when the sample size is extremely small (5 per group) while
it manages to control FDR as the sample size increases to 10 per group. ANCOM-BC has the
largest power among all DA analyses.
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Supplementary Figure 7: FDR and power comparisons when the proportion of differentially
abundant taxa is large.

The False Discovery Rate (FDR) and power of various differential abundance (DA) analyses
(two-sided) are shown in panel a and panel b, respectively. Data are generated from Poisson-
Gamma distributions. The variability in sampling fractions is set to be large. The Y-axis
denotes patterns of proportion of differentially abundant taxa. The solid vertical line is the
5% nominal level of FDR, and the dashed vertical line denotes 5% nominal level plus one
standard error (SE). By default, ANCOM-BC implements Bonferroni correction and other DA
methods implement BH procedure to adjust for multiple comparisons. Color and the name
of the corresponding DA method are shown at the bottom within the graph. Two simulation
scenarios are considered: small and unbalanced data (n1 = 20, n2 = 30), as well as large and
balanced data (n1 = n2 = 50); number of simulations = 100. ANCOM-BC requires a certain
number of non-differentially abundant taxa for precise estimates of sampling fractions. When
the proportion of differentially abundant taxa is large (e.g. 75%), ANCOM-BC slightly exceeds
the nominal level with regard to FDR.
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Supplementary Figure 8: Box plot of residuals between true sampling fraction and its estimate
for each sample.

In the box plot, the lower and upper hinges correspond to the first and third quartiles (the
25th and 75th percentiles). The median is represented by a solid line within the box. The
upper whisker extends from the hinge to the largest value (maxima) no further than 1.5 times
Interquartile Range (IQR, distance between the first and third quartiles) from the hinge, the
lower whisker extends from the hinge to the smallest value (minima) at most 1.5 times IQR of
the hinge. Data beyond the end of the whiskers are called ”outlying” points. N = 30 samples
examined over 2 experimental groups (denoted by circles and triangles) and the data points
are overlaid in each box. Text on the upper left corner indicates the color for each method
and variances are provided within parenthesis for each method. The variability in sampling
fractions is set to be large. With smaller sampling fractions as compared to the settings of Fig.
3 in the main text, this figure shows that UQ and TMM have the largest variance, ELib-UQ,
ELib-TMM, MED and CSS have larger variance than ANCOM-BC, while TSS has the least.
However, only TSS shows a clear separation of residuals by its group label, which indicates that
TSS has a systematic bias of estimating sampling fractions. Samples from the two groups are
inter-mixed well for all the remaining methods in this simulated data.
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Supplementary Figure 9: EM and weighted least square (WLS) estimators of the bias term are
highly correlated.

We computed the Pearson correlation coefficient between δ̂EM and δ̂WLS along with p-value.
The range of differentially abundant taxa was set from 5% to 25% (shown as the panel title).
It is clearly that δ̂EM is highly correlated with δ̂WLS in all simulation scenarios: r = 1 (p =
4.97 × 10−126) when 5% of taxa are differentially abundant; r = 0.99 (p = 6.07 × 10−94) when
15% of taxa are differentially abundant; r = 0.98 (p = 8.37 × 10−64) when 25% of taxa are
differentially abundant. Hence, it is reasonable to approximate δ̂EM and Var(δ̂EM) by δ̂WLS and
Var(δ̂WLS), respectively.
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Supplementary Figure 10: FDR and power comparisons using synthetic data from Poisson-
Gamma distributions.

The False Discovery Rate (FDR) and power of various differential abundance (DA) analyses
(two-sided) are shown in panel a and panel b, respectively. BH procedure were made for multiple
comparisons for all DA methods. The variability in sampling fractions is set to be large. The
Y-axis denotes patterns of proportion of differentially abundant taxa. The solid vertical line is
the 5% nominal level of FDR, and the dashed vertical line denotes 5% nominal level plus one
standard error (SE). Color and the name of the corresponding DA method are shown at the
bottom within the graph. Two simulation scenarios are considered: small and unbalanced data
(n1 = 20, n2 = 30), as well as large and balanced data (n1 = n2 = 50); number of simulations
= 100. Results are similar to those shown in Fig. 4, only ANCOM and ANCOM-BC control
the FDR under the nominal level (5%), but ANCOM-BC has the largest power as compared to
other methods in this case.
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Supplementary Figure 11: Flowchart of simulation for comparing normalization efficacy.
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Supplementary Figure 12: Flowchart of simulation for FDR and power evaluation using Poisson-
Gamma models: Two-group comparison.
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Supplementary Figure 13: Flowchart of simulation for FDR and power evaluation using global
pattern data [9]
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Supplementary Figure 14: Flowchart of simulation for FDR and power evaluation using Poisson-
Gamma models: Multi-group comparison.
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Supplementary Tables

Phylum Log Fold Change SE CI.Lower CI.Upper S.Zero P-value

MA-US, infants

Elusimicrobia 2.04 0.00 2.04 2.04 1.00 0.00
Spirochaetes 2.61 0.00 2.61 2.61 1.00 0.00
Cyanobacteria 2.60 0.32 1.68 3.52 0.00 0.00
Verrucomicrobia -4.03 0.59 -5.75 -2.32 0.00 0.00
Fusobacteria 2.95 0.47 1.58 4.32 0.00 0.00
Tenericutes -2.75 0.52 -4.26 -1.23 0.00 0.00
Lentisphaerae 0.51 0.29 -0.32 1.34 0.00 0.81
Actinobacteria 0.65 0.45 -0.66 1.95 0.00 1.00
Bacteroidetes 0.85 0.58 -0.84 2.53 0.00 1.00
Euryarchaeota -0.12 0.24 -0.80 0.56 0.00 1.00
Firmicutes -0.32 0.23 -0.99 0.35 0.00 1.00
Proteobacteria -0.36 0.44 -1.62 0.90 0.00 1.00
TM7 0.04 0.25 -0.69 0.78 0.00 1.00
Synergistetes 0.00 0.00 0.00 0.00 1.00 1.00

MA-US, adults

Elusimicrobia 6.43 0.00 6.43 6.43 1.00 0.00
Spirochaetes 4.90 0.00 4.90 4.90 1.00 0.00
Synergistetes -1.06 0.00 -1.06 -1.06 1.00 0.00
Cyanobacteria 6.26 0.96 3.47 9.04 0.00 0.00
Verrucomicrobia -4.26 1.09 -7.44 -1.08 0.00 0.00
Lentisphaerae 3.55 1.09 0.39 6.72 0.00 0.01
Euryarchaeota 3.07 1.05 0.00 6.14 0.00 0.04
Actinobacteria -1.91 0.76 -4.13 0.31 0.00 0.13
Bacteroidetes 0.11 0.70 -1.95 2.16 0.00 1.00
Firmicutes -0.62 0.65 -2.53 1.28 0.00 1.00
Fusobacteria 0.87 0.92 -1.80 3.54 0.00 1.00
Proteobacteria 1.17 0.71 -0.90 3.25 0.00 1.00
Tenericutes -0.08 0.67 -2.04 1.87 0.00 1.00
TM7 -0.75 0.66 -2.66 1.16 0.00 1.00

VEN-US, infants

Elusimicrobia 1.93 0.00 1.93 1.93 1.00 0.00
Spirochaetes 1.46 0.00 1.46 1.46 1.00 0.00
Cyanobacteria 4.17 0.54 2.61 5.73 0.00 0.00
Lentisphaerae 2.11 0.51 0.63 3.59 0.00 0.00
Fusobacteria 1.83 0.55 0.23 3.43 0.00 0.01
Bacteroidetes 1.49 0.61 -0.27 3.25 0.00 0.16
Actinobacteria -0.24 0.68 -2.20 1.71 0.00 1.00
Euryarchaeota 0.39 0.39 -0.73 1.51 0.00 1.00
Firmicutes -0.09 0.29 -0.92 0.73 0.00 1.00
Proteobacteria -0.04 0.47 -1.41 1.33 0.00 1.00
Tenericutes -0.13 0.60 -1.86 1.60 0.00 1.00
TM7 0.06 0.34 -0.92 1.03 0.00 1.00

Continued on next page
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Supplementary Table 1 – Continued from previous page

Phylum Log Fold Change SE CI.Lower CI.Upper S.Zero P-value

Verrucomicrobia -0.82 0.82 -3.19 1.56 0.00 1.00
Synergistetes 0.00 0.00 0.00 0.00 1.00 1.00

VEN-US, adults

Elusimicrobia 7.58 0.00 7.58 7.58 1.00 0.00
Spirochaetes 6.07 0.00 6.07 6.07 1.00 0.00
Firmicutes -2.28 0.35 -3.31 -1.26 0.00 0.00
Cyanobacteria 3.88 0.64 2.03 5.73 0.00 0.00
Actinobacteria -2.87 0.48 -4.27 -1.48 0.00 0.00
Verrucomicrobia -4.28 0.78 -6.54 -2.02 0.00 0.00
TM7 -2.02 0.39 -3.17 -0.88 0.00 0.00
Bacteroidetes -1.74 0.42 -2.97 -0.52 0.00 0.00
Synergistetes -2.10 0.53 -3.66 -0.54 0.00 0.00
Lentisphaerae 2.69 0.69 0.67 4.71 0.00 0.00
Tenericutes -1.10 0.42 -2.32 0.11 0.00 0.10
Euryarchaeota 0.74 0.79 -1.55 3.03 0.00 1.00
Fusobacteria 0.19 0.73 -1.95 2.32 0.00 1.00
Proteobacteria -0.34 0.52 -1.85 1.18 0.00 1.00

MA-VEN, infants

Acidobacteria 0.33 0.00 0.33 0.33 1.00 0.00
Chloroflexi 0.26 0.00 0.26 0.26 1.00 0.00
Verrucomicrobia -2.98 0.65 -4.87 -1.08 0.00 0.00
Tenericutes -2.37 0.54 -3.95 -0.79 0.00 0.00
Spirochaetes 1.13 0.35 0.11 2.15 0.00 0.02
Lentisphaerae -1.35 0.50 -2.82 0.12 0.00 0.09
Cyanobacteria -1.31 0.53 -2.88 0.26 0.00 0.18
Fusobacteria 1.35 0.60 -0.40 3.09 0.00 0.31
Actinobacteria 1.13 0.60 -0.64 2.89 0.00 0.80
Bacteroidetes -0.41 0.55 -2.03 1.21 0.00 1.00
Elusimicrobia 0.09 0.33 -0.89 1.07 0.00 1.00
Euryarchaeota -0.27 0.33 -1.24 0.70 0.00 1.00
Firmicutes 0.01 0.22 -0.65 0.66 0.00 1.00
Proteobacteria -0.11 0.39 -1.25 1.04 0.00 1.00
TM7 0.22 0.29 -0.64 1.08 0.00 1.00
Synergistetes 0.00 0.00 0.00 0.00 1.00 1.00

MA-VEN, adults

Synergistetes -1.48 0.00 -1.48 -1.48 1.00 0.00
Verrucomicrobia -1.65 0.76 -3.86 0.56 0.00 0.39
Elusimicrobia 1.67 0.83 -0.76 4.10 0.00 0.59
Actinobacteria -0.67 0.52 -2.20 0.86 0.00 1.00
Bacteroidetes 0.20 0.46 -1.13 1.54 0.00 1.00
Cyanobacteria 0.70 0.68 -1.27 2.67 0.00 1.00
Euryarchaeota 0.66 0.69 -1.36 2.68 0.00 1.00
Firmicutes 0.01 0.41 -1.19 1.20 0.00 1.00
Fusobacteria -0.98 0.71 -3.05 1.09 0.00 1.00
Lentisphaerae -0.78 0.77 -3.01 1.45 0.00 1.00

Continued on next page
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Supplementary Table 1 – Continued from previous page

Phylum Log Fold Change SE CI.Lower CI.Upper S.Zero P-value

Proteobacteria -0.14 0.46 -1.47 1.19 0.00 1.00
Spirochaetes 1.65 1.03 -1.34 4.65 0.00 1.00
Tenericutes -0.63 0.40 -1.79 0.53 0.00 1.00
TM7 -0.40 0.41 -1.59 0.79 0.00 1.00
Acidobacteria 0.00 0.00 0.00 0.00 1.00 1.00
Chloroflexi 0.00 0.00 0.00 0.00 1.00 1.00

Supplementary Table 1: Results of pairwise differential abundance analyses stratified by age:
infants (at most 2 years), and adults (between 18 and 40) using the
global gut microbiota data [10]

Differential abundance analyses were performed at the phylum level of the taxonomy. Effect
size (log fold change), standard error (SE), Bonferroni adjusted 95% confidence intervals (CI),
and p-value (two-sided; Bonferroni adjusted) are provided. Presence of structural zero (S.Zero)
is denoted by 1 in the corresponding column and the taxon would be declared as differential
abundant automatically (with zero SE and zero adjusted p-value).
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Infants (age ≤ 2, n = 133)

Malawi (n = 56) The US (n = 49) Venezuela (n = 28)

Age
Min 0.033 0.083 0.250
Max 2.0 2.0 2.0
Mean (SD) 0.99 (0.63) 0.55 (0.42) 1.1 (0.58)
BMI
Min 11 14 14
Max 22 24 19
Mean (SD) 16 (1.9) 18 (3.4) 16 (1.4)
Gender (%)
F 26 (46) 26 (53) 10 (36)
M 30 (54) 23 (47) 15 (54)
NA 0 (0) 0 (0) 3 (11)
Breast-Fed (%)
Y 56 (100) 10 (20) 28 (100)
N 0 (0) 27 (55) 0 (0)
NA 0 (0) 12 (24) 0 (0)

Adults (18 ≤ age ≤ 40, n = 83)

Malawi (n = 21) The US (n = 41) Venezuela (n = 21)

Age
Min 20 23 18
Max 38 40 40
Mean (SD) 27 (4.9) 29 (5.3) 29 (7.4)
BMI
Min 20 18 21
Max 26 66 41
Mean (SD) 22 (2.0) 27 (11) 30 (5.2)
Gender (%)
F 21 (100) 39 (95) 20 (95)
M 0 (0) 2 (5) 1 (5)
NA 0 (0) 0 (0) 0 (0)
Breast-Fed (%)
Y 0 (0) 0 (0) 0 (0)
N 0 (0) 0 (0) 0 (0)
NA 21 (100) 41 (100) 21 (100)

Supplementary Table 2: Summary of demographic variables of the global gut microbiota
data[10].
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Infants (age ≤ 2)

Log fold change SE P-value
MA - US 1.2 0.63 0.063
VEN - US 1.6 0.67 0.018*
MA - VEN -0.41 0.59 0.48

Adults (18 ≤ age ≤ 40)

Log fold change SE P-value
MA - US 0.73 0.96 0.45
VEN - US 0.54 0.55 0.33
MA - VEN 0.20 0.62 0.75

Supplementary Table 3: Pairwise tests using ANCOM-BC for the equality of mean log ratio of
Bacteroidetes to Firmicutes between two populations.

Data are represented by effect size (log fold change), standard error (SE), and p-value (two-
sided; Bonferroni adjusted) derived from the ANCOM-BC model. The differences are repre-
sented as Population X - Population Y. Thus, in the case of adult populations, the mean ratio
of Bacteroidetes to Firmicutes in Malawi is exp(0.73) = 2.08 times more than in the US. It is
well-known that the ratio of Bacteroidetes to Firmicutes is inversely related to BMI (or obesity).
According to the global gut microbiota data [10], the average BMI of US adult is larger than
that of a Malawi adult (independent of gender). Similarly, the mean ratio of Bacteroidetes to
Firmicutes in Venezuela adult population is exp(0.54) = 1.72 times more than in the US.
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# Taxa Sample Size Diff (%) FDR FDRSD Power PowerSD

10 20/30 25 0 0 0.96 0.14
10 50/50 25 0.0073 0.07 0.96 0.13
50 20/30 25 0.012 0.037 0.79 0.15
50 50/50 25 0.012 0.047 0.84 0.13

Supplementary Table 4: FDR and power of ANCOM-BC when the number of taxa is small.

Data are generated from Poisson-Gamma distributions. The variability in sampling fractions
is set to be large and the proportion of differentially abundant taxa (Diff (%)) is set to be 25%.
Two simulation scenarios are considered: small and unbalanced data (n1 = 20, n2 = 30), as
well as large and balanced data (n1 = n2 = 50); number of simulations = 100. FDR and power
from ANCOM-BC model (two-sided; Bonferroni adjusted) were evaluated at small number of
taxa (10 or 50). As we increase the absolute abundance mimicking the OTU table aggregating
to higher taxonomic levels (e.g. Phylum level), ANCOM-BC still manages to control the FDR
in this condition.
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# Taxa Sample Size Diff (%) FDR FDRSD Power PowerSD

1000 20/20/30/30 5 0.033 0.049 0.95 0.014
1000 20/20/30/30 15 0.030 0.056 0.89 0.018
1000 20/20/30/30 25 0.026 0.048 0.86 0.019
1000 50/50/50/50 5 0.024 0.040 0.97 0.012
1000 50/50/50/50 15 0.025 0.054 0.92 0.014
1000 50/50/50/50 25 0.031 0.057 0.90 0.015

Supplementary Table 5: FDR and power of ANCOM-BC for multi-group comparison.

Data are generated from Poisson-Gamma distributions. The variability in sampling fractions
is set to be large, sample size is set to be either 20/20/30/30 or 50/50/50/50, and the proportion
of differentially abundant taxa (Diff (%)) ranges from 5% to 25%; number of simulations = 100..
FDR and power from ANCOM-BC model (two-sided; Bonferroni adjusted) were evaluated in
the presence of 5=4 group. ANCOM-BC successfully controls the FDR and maintains high
power in all simulation scenarios.
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Diff (%) Bias2 (EM) Bias2 (WLS) Var (EM) Var (WLS) 1/(nm0)
5 5.30× 10−4 7.49× 10−4 1.85× 10−5 2.27× 10−5 2.11× 10−5

15 0.186 0.165 4.94× 10−5 7.56× 10−5 2.35× 10−5

25 0.0291 0.0449 1.92× 10−5 6.13× 10−5 2.67× 10−5

Supplementary Table 6: Bias and variance of δ̂EM and δ̂WLS.

Bias (squared) and variance of δ̂EM and δ̂WLS with respect to δ were calculated under dif-
ferent simulation scenarios. Sample size is set to be 50/50, and the proportion of differentially
abundant taxa (Diff (%)) ranges from 5% to 25%; number of simulations = 100. Both EM and
WLS estimators have relatively small bias in estimating δ, and their variances are of the order
of 1/(nm0).
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Method Estimate of cjk Estimate of djk

ANCOM-BC ĉANCOM-BC
jk = exp(d̂ANCOM-BC

jk ) d̂ANCOM-BC
jk =

{
ȳ·rk − ȳ·r· j = r

ȳ·jk − ȳ·j· − δ̂rj j 6= r
,

where r is the reference group.

CSS ĉCSS
jk = exp(d̂CSS

jk ) d̂CSS
jk = log2(

sl̂jk+1

N ).

MED ĉMED
jk = median

i:OR
i 6=0

Oijk

OR
i

d̂MED
jk = log(ĉMED

jk ).

UQ ĉUQ
jk = UQ

i:Oijk>0
(
Oijk

O·jk
), where UQ

denotes the upper quartile.

d̂UQ
jk = log(ĉUQ

jk ).

TMM log2(ĉ
TMM
j ) =

∑
i∈G∗ wijkMijk∑

i∈G∗ wijk
,

where Mijk = log2(
Oijk/O·jk
Oijr/O·jr

),

wij =
O·jk−Oijk

O·jkOijk
+

O·jr−Oijr

O·jrOijr
. Re-

fer to Robinson and Oshlack [11]
for details.

d̂TMM
jk = log(ĉTMM

jk ).

Elib-UQ ĉElib-UQ
jk = O·jkĉ

UQ
jk d̂Elib-UQ

jk = log(ĉElib-UQ
jk ).

Elib-TMM ĉElib-TMM
jk = O·jkĉ

TMM
jk d̂Elib-TMM

jk = log(ĉElib-TMM
jk ).

TSS ĉTSS
jk = O·jk d̂TSS

jk = log(ĉTSS
jk ).

Supplementary Table 7: Summary of different estimators of sampling fractions.
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