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Supplementary Note 1 - Related Work

Bogojeski et al. [1] construct a density functional on top of a reasonably cheap baseline DFT
calculation (GGA) that can achieve accuracies close to coupled-cluster results. The main differ-
ence between our approaches lies in the choice of basis functions, and the way symmetries are
encoded. In their method, the molecule is first aligned with a global coordinate system, which is
defined through some molecular axes. The electron density is subsequently expanded in a Fourier
basis. These design choices seem to restrict their method to systems of fixed size and limit its
transferability. Furthermore, instead of obtaining a potential from the energy regressor, an en-
ergy correction is added to the baseline results, similar to earlier work by the authors [2]. Thus,
to compute forces, their method relies on an auxiliary model that predicts the electron density,
whereas we can directly calculate forces using the Hellmann-Feynman [3] theorem.

Nagai et al. [4] propose a more traditional approach of optimizing the functional form of
the exchange-correlation (xc) energy. Being defined on a grid without the need for an additional
basis set, it is similar in its form to approaches such as DPPS [5], the main difference being the
use of a neural network to flexibly parametrize the functional. The neural network is trained
by alternating Monte-Carlo updates on the weights with self-consistent calculations, rather than
back-propagation. This enables the authors to include densities in their loss-function but limits
training set sizes to a few small systems.

Lei and Medford [6] propose a similar, grid-based approach that uses Maxwell-Cartesian
spherical harmonic kernels to construct features for their machine-learned functional. However,
instead of using total energies as response variables, they rely on a spatial decomposition of the
xc-energy, allowing them to decouple grid-points during training but limiting their method to
instances for which such decomposition is available.

Apart from approaches rooted in DFT, others have proposed wave-function based methods that
try to predict post-Hartree-Fock energies. Welborn et al. [7] and Cheng et al. [8] use molecular-
orbital-based machine learning to predict MP2 and coupled-cluster correlation energies with GPR.
Nudejima [9] et al. use grid-based descriptors to learn a regression model that can predict the
CCSD(T) correlation energy density using densities obtained from Hartree-Fock calculations as
input.

To our knowledge, none of the above mentioned methods, except for that of Nagai et al., is
used in self-consistent calculations.

Supplementary Note 2 - Datasets

sGDML To test the data efficiency of NeuralXC, we made use of data by Chmiela et al. [10],
which was created to evaluate the symmetric gradient-domain machine learning (sGDML) force
field model. The dataset contains total energies calculated for benzene, toluene, ethanol, and
malonaldehyde at the coupled cluster with singles doubles and perturbative triples (CCSD(T))
level with a cc-pVDZ (cc-pVTZ for ethanol). The calculations were conducted with Psi4 [11].
We further included a set of 1000 water geometries and their associated CCSD(T) total energies
calculated with a cc-pVTZ basis set used in Ref. [8] and obtainable at Ref. [12]. The test sets
consist of 500 geometries (1000 for ethanol) whereas the maximum training set size was 1000 (500
for water). The reduced training sets were sampled from the full set by employing a k-means
clustering algorithm in feature space.

MOB-ML The transferability of our functionals was evaluated by making use of Cheng et
al.’s publicly available dataset [12], which contains structures for ethane, propane, n-butane and
isobutane sampled from molecular dynamics simulation at 350 K and their associated total energies
calculated at a CCSD(T) level (for details see [8]). We further augmented their dataset with our
calculations of 100 structures of ethylene, acetylene, and propene each, all sampled from a 5 ps MD
trajectory at 350 K and calculated with CCSD(T) using the cc-pVTZ basis [13]. The calculations
were conducted with PySCF [14] using density fitting and the frozen core approximation following
the methods employed to create the original dataset by Cheng et al.
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MB-pol The dataset used to train a functional optimized for water contained 400 water
monomers, 500 dimers, and 250 trimers. The structures and their corresponding energies were all
sampled from the data that was used to fit the MB-pol force-field [15, 16, 17]. In particular, for
dimers and trimers, the sampling consisted of two steps: half the samples were obtained by first
binning the structures by their corresponding two and three-body energies and then uniformly
sampling from these bins. The other half was obtained by randomly sampling the full datasets.
This was done to give more weight to the tails of the data distribution and to capture extreme
cases which might contain valuable information for our ML model. As the MB-pol dataset only
contained dimers and trimers, we randomly sampled monomers from the dimer structures as well.
For the energies, we followed Babin et al. [18] and used the highly accurate Partridge-Schwenke
potential energy surface for the monomers and the one-body energies of the dimers [19]. Two and
three-body energies were extracted from the MB-pol dataset, where CCSD(T) at the complete
basis set (CBS) limit was used to obtain these energies using the MOLPRO [20] package (see Refs.
[15, 16] for details).

Supplementary Note 3 - Model transferability

Work on machine learned kinetic energy functionals [21] indicates that the transferability of a
given model may depend on its architecture, i.e. the number and size of the hidden layers.

We want to point out that in this work, we have not optimized the architecture or hyperpa-
rameters of our neural networks for transferability, rather these hyperparameters were picked to
minimize generalization error within the training set, using k-fold cross validation.

For the MOB-ML [8] dataset, we have however optimized the basis set parameters towards
better transferability. We have achieved this by choosing a basis that showed the best generaliza-
tion on a set of 1000 propane structures if the NeuralXC model was trained on 101 methane and
1000 ethane structures. These tests were conducted non-selfconsistently, i.e. trained models were
only applied to features (densities) obtained with the baseline method (PBE [22]) and were not
used in self-consistent calculations.

We can in principle use the same strategy to determine the optimal network architecture.
Supplementary Figure 2 shows the mean absolute error (MAE) on propane of models trained on
methane and ethane depending on the number of hidden layers and the number of nodes per hidden
layer. For simplicity every hidden layer inside a network has the same number of nodes. We can
see that the architecture three hidden layers with 4 nodes each achieve the best transferability.
For hidden layers of size 4 and 8, increasing the amount of layers improves transferability up to
3 layers, whereas for a hidden layer of size 16, no obvious trend can be determined. Depending
on the network architecture, the MAE of NeuralXC is about 12-22% of the MAE of PBE. For no
model architecture NeuralXC produced less accurate energies than PBE.

Supplementary Note 4 - Scaling properties

Neural networks have the convenient property that the cost of evaluating them is independent of
the amount of data they were trained on. In contrast, for parameter-free methods such as Kernel
Ridge Regression or Gaussian Process Regression the cost of evaluating a model scales with the
amount of training data. Nevertheless, our model adds computational overhead to the baseline
functional, most of which originates from the projection of the real-space density onto the basis
sets. The cost of this projection scales linearly with the number of atoms in the system and we
therefore expect for it to be negligible in the limit of large system sizes.

We tested the efficiency of our method by comparing the performance of the NeuralXC func-
tional trained on the MB-Pol dataset to that of PBE and the van-der Waals functional with
consistent exchange (vdW-cx) [23]. The started out with a system containing 12 water molecules
inside a 6.51Å× 6.51Å× 6.76Å tetragonal unit cell and proceeded by repeatedly doubling the unit
cell to obtain larger systems. All systems were calculated with a doubly polarized quadruple zeta
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basis [24] and a real-space cutoff of 300 Ry. The calculations were run with SIESTA [25]. We have
opted to simulate short molecular dynamics (MD) trajectories of 10 steps, and report CPU hours
per MD step, in order to approximately disregard start-up times.

For all functionals, the scaling is approximately linear for small systems as contributions from
real-space grid calculations dominate the computational workload. NeuralXC is approximately
14% more expensive than PBE and 30% cheaper than vdW-cx for a system containing 12 water
molecules. The gap between all three methods decreases once system sizes reach a domain where
the cubic scaling property of the diagonalization algorithm is starting to dominate the workload.

Supplementary Note 5 - Intra-group transferability

Beyond the studies presented in the main text, we have also tested how well our method generalizes
to elements other than those contained in the training set. It is reasonable to assume that a model
should be transferable within the same group of the periodic table due to the similar chemistry
involved. We do, however, not expect to see transferability within rows.

We have trained a model on an extensive dataset containing samples of all molecules studied
in the main text. The data set used for pre-training consisted of 50 toluene, 20 benzene, 250 mal-
onaldehyde, 100 ethanol, 50 water, 50 ethane, 20 propane, 10 ethylene and 10 acetylene structures
calculated with the density functional ωB97M-V and the 6-311G* basis set using PySCF.

A model with three hidden layers and four nodes per hidden layer was trained on this dataset.
The layers were frozen and a second model was trained on a ”fine-tuning” data set of 50 water,
50 ethane, 10 ethylene, 10 acetylene calculated with CCSD(T) using a cc-pVQZ basis set. The
second model also consisted of three hidden layers with 4 nodes each and was trained as an additive
correction to the first model. The basis set parameters used are the same as for the MOB-ML
model, given in Supplementary Table 1.

As we were aiming to create a functional that can be used across a wide variety of elements we
have not encoded any information about the atomic species in the model input. In other words,
we have used the same basis set, and the same atomic neural network for every element in the
training set. This is in contrast to other parts of this work, where a different atomic network was
used for every species.

Supplementary Table 2 shows that our model improves bond lengths overall. Being trained
on systems containing Oxygen and Carbon, it seems to be transferable to Silicon and Sulfur. No
significant improvement in bond angles can be observed.

We want to point out that these results should be considered a proof of concept and not as an
attempt to obtain a general-purpose functional. While the latter goal is definitely worth pursuing
it will require a more curated training set than the one used in this study. This avenue will be
explored in future work.

Supplementary Note 6 - s66 dataset

The s66x8 dataset [26], which contains dissociation curves for 66 non-covalent complexes relevant
to biomolecular structures, was used to evaluate the transferability of our water model to hetero-
geneous systems. The reference energies and structures were taken from Ref. [26]. Energies were
obtained at the CCSD(T) level of theory, structures were obtained with MP2/cc-pVTZ using the
MOLPRO package. For further details regarding the calculations we refer the reader to ref. [26].

We evaluated the performance of NXC-W01 by optimizing the intermolecular distances in the
complexes while holding intramolecular distances fixed. The same was done using PBE to compare
our machine learned model to its baseline functional.

Supplementary Figure 3 and Supplementary Table 3 report the absolute errors in equilibrium
distance with respect to the reference data . We have only reported results for the hydrogen-
bonded subset of s66. Other complexes (dispersion and ”other”) did not improve significantly.
This is expected as the model was not fitted to treat the latter interactions. For hydrogen-bonded
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system, we observe that NXC-W01 improves bonding distances from an average error of 0.038 Å
for PBE to an error of 0.020 Å.

Beyond bond lengths, we have also examined how well NeuralXC reproduces binding energies
across the eight intermolecular separations included for every molecule pair in the s66x8 dataset.
We report average RMS errors for these energies. While these two quantities are of course closely
related, the bond length places more importance on an accurate treatment of energies close to the
equilibrium distance, whereas an energy metric gives the same weight to all distances in the s66x8
dataset (these range from 0.9 to 2.0 times the equilibrium distance).

For hydrogen bonded systems NXC produces an RMSE of 7.2 meV compared to an error
of 9.9 meV for PBE. The largest improvement can be observed for water...pyridine where NXC
produces an average error of 4.8 meV and PBE an error of 12.7 meV. For water..methanol NXC
shows the largest decline in performance compared to PBE with an error of 5.3 meV and 2.4 meV
respectively.

For dispersion dominated systems NXC produces an RMSE of 53.7 for NXC and 53.8 for PBE,
with the largest improvement occuring for uracil...uracil (78.2 meV vs. 87.3 meV) and the largest
decline for benzene...benzene (59.5 meV vs. 58.0 meV)

For systems classified as ”other” in the original dataset NXC produces an RMSE of 23.5 meV
compared to 24.2 meV for PBE. The largest improvement can be observed for benzene...acetamide
(14.6 meV vs 18.6 meV) the largest decline in accuracy for ethyne...water(3.5 meV vs 1.2 meV)

To summarize, while hydrogen bond lengths are corrected by a factor of about 50%, we observe
no significant improvement in the overall energetic treatment of systems contained in the s66x8
dataset. We are, however, encouraged by our findings that NeuralXC, when used beyond the scope
of its training set, does not decrease the accuracy of its baseline functional PBE. For future appli-
cations of NXC-W01 this means that the functional can be used in a variety of water-containing
systems such as solvated molecules, where a very accurate treatment of water-water interactions
can be achieved while a PBE-level treatment of the remaining interactions is obtained.

Supplementary Note 7 - Fitting to the exact potential

Our results indicate that while fitting a model to the total energy certainly improves the prediction
of energies and forces it does little to improve electron densities and quasi particle energies. Hence,
we will outline a path to solve this problem by fitting to the exact potential instead, and will show
preliminary results that will give an outlook on further studies regarding this issue.

Assuming the exact potential Vref for a given system is known, we can use it to define an
extended loss function. We use the term ”exact” in the sense that it reproduces the reference
ground state density ρref associated with the reference energy Eref .

We define a new loss-function as an extension to Supplementary Equation (7):

L = LE+λ2LV =

N∑
i

((E
(i)
ref−E

(i)
0 )−EML[ρ

(i)
ref ])

2+λ2
N∑
i

∫
r

((V
(i)
ref (r)−V (i)

0 (r))−VML[ρ
(i)
ref(r)])2 (1)

with

VML[ρ(r)] =
∑
β

∂EML

∂cβ
ψβ(r) ≡

∑
β

vβψβ(r) (2)

V0 =
δE0

δn
(3)

. The scale factor λ can be chosen to give different priorities to the energy and potential parts of
the loss function and it might be beneficial to adjust it during the training process. Expanding
Vref in the machine-learning basis

Vref(r) = V0 +
∑
β

bβψβ(r), (4)
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the loss function simplifies to

L = LE + λ2
N∑
i

∑
αβ

(vαSαβvβ − 2vαSαβbβ). (5)

where Sαβ =
∫
r
ψα(r)ψβ(r). We optimized a model on a set of five H2 molecules (see Supple-

mentary Figure 5) with bond lengths between 0.55 and 0.85 Å that were computed using an
aug-cc-pVQZ basis with CCSD. The effective one-body potential Vref was calculated using our
implementation of a method developed by Wu et al. [27] together with data created with PySCF .
For the machine learning basis set ψ, we have also used aug-cc-pVQZ to simplify the computation
of integrals involving atomic orbitals.

To evaluate the quality of the obtained density we use the following error metric:

Errorρxc =

∫
r
|ρxc − ρref |2∫

r
|ρxc|2

∫
r
|ρref |2

(6)

which evaluates to a value between zero and one, where zero indicates perfect agreement. The
same metric was used in work by Zhou et al. [28]. Both Supplementary Figures 4 and 5 indicate
that there is signifcant improvement over the baseline functional PBE.

Further investigation of this method and an integration of the extended loss in the official
release of NeuralXC will be the subject of future works.

Supplementary Methods

In Supplementary Table 1, we summarized the basis sets used for every ML-model, their number
of radial functions nmax, their highest angular momentum lmax and their radial cutoff ro as well
as the network architecture (meaning the number of hidden layers and the amount of nodes per
layer). The ”Density” column indicates whether we used the full density (ρ) or the modified
density (δρ).

We have already discussed the ”iterative training” procedure in the Methods section of the
main text, but we will outline it here in more detail for clarity:

Given a set of structures C = {R(i)
j , Z

(i)
j } (i ∈ {1, ..., N} and N = number of training samples)

and corresponding total energies {E(i)
ref} obtained with a reference method of choice (e.g. coupled-

cluster), we pick a baseline density functional Ebase[ρ] ≡ E0[ρ] (PBE in this work). We use
the baseline functional to obtain self-consistent ground state densities and total energies for C
which we denote by ρ

(i)
0 and E

(i)
0 . We introduce the (first iteration) machine learned functional

EML,1[ρ;ω, θ] that consists of a fully connected neural network plus preprocessing steps as described
in the Methods section of the main text. Here ω denotes the model parameters inside the neural
network, whereas θ denotes the hyperparameters of the model.

Given a choice of hyperparameters θ, the model parameters ω can be optimized by minimizing
the loss function

Ltrain,ρ0 =

N∑
i

((E
(i)
ref − E

(i)
0 )− EML,1[ρ

(i)
0 ;ω, θ])2, (7)

using gradient descent. We will denote the optimized model parameters as ω̂.
The hyperparameters are then optimized using k-fold cross-validation. This means the above

procedure was repeated for different choices of hyperparameters (performing a grid search). For
each choice of θ, the training set was split into K random folds Ck (with k ∈ {1, 2, ...,K}). Let
Sk(θ) be the score assigned to fold Ck, if the model was fitted on data contained in all other folds
Cj 6=k with hyperparameters θ:

Sk(θ) =
1

|Ck|
∑
i∈Ck

|(E(i)
ref − E

(i)
0 )− EML,1[ρ

(i)
0 ; ω̂, θ]|. (8)

6



Then the optimized hyperparameters θ̂ are given by

θ̂ = argmin
θ

S(θ) =
1

K

K∑
k=1

Sk(θ). (9)

We have now obtained an optimized functional E1[ρ] = E0[ρ] + EML,1[ρ; ω̂, θ̂]. If we were to
only use the machine learned model as an additive energy correction, the model could be used as
is. In self-consistent calculations, however, using the modified functional E1[ρ] will lead to new

ground state densities ρ
(i)
1 6= ρ

(i)
0 . Therefore the ”self-consistent loss” LSC will generally be greater

than the training loss Ltrain:

LSC,1 =

N∑
i

((E
(i)
ref − E0[ρ

(i)
1 ])− EML,1[ρ

(i)
1 ; ω̂, θ̂])2 ≥ Ltrain,ρ0 . (10)

To remedy this, we can apply the above optimization procedure iteratively, introducing a new
machine learned functional EML,2 that is trained to minimize

Ltrain,ρ1 =

N∑
i

((E
(i)
ref − E0[ρ

(i)
1 ])− EML,2[ρ

(i)
1 ;ω, θ])2, (11)

obtaining new self-consistent densities ρ
(i)
2 and so on, until convergence with respect to an energy

tolerance ε = 0.5 meV is achieved, i.e.

|LSC,j − Ltrain,ρj−1
| < ε2. (12)

Note that in order for this iterative training to converge, it is advisable to have a clearly defined
relationship between EML,j and EML,j−1. One option is to simply take EML,j = EML,j−1 and
continue the optimization of the functional starting with the parameters ω̂j−1 obtained during the
previous iteration. We have found the following procedure to give the best convergence: We obtain
EML,j by freezing all hidden layers of EML,j−1 and concatenating new hidden layers to it. The
parameters associated with the new hidden layers are then to be optimized in order to minimize
Ltrain,ρj−1

. Cross-validation, as described above, can still be applied at every iterative training
step to determine the optimal number of nodes and hidden layers, however hyperparameters that
are associated with the preprocessing pipeline remain fixed after the first iteration.

Once this iterative training procedure has converged after J steps, we can freeze the model
EML,J [ρ] and use ENXC = Ebase[ρ] +EML,J [ρ] as a functional. In this work, we have opted to only
add one layer per iterative step, therefore, the number of iterations J is equivalent to the number
of hidden layers in the finished network. Supplementary Table 1 gives an overview of the model
architectures: e.g. [4, 4, 4] indicates a fully connected neural network consisting of 3 hidden layers
with 4 nodes each. We can therefore conclude that the training converged after 3 iterations in this
case.

In many cases, we were able to improve accuracy even further, by using ENXC as the new
baseline functional and restarting the entire training procedure. Doing so, one obtains an ensemble
of functionals. In Supplementary Table 1 we have indicated whenever an ensemble of functionals
was employed, by the use of a plus sign in the ”network architecture” column. It should be noted
that in spite of the terminology used here, our method differs from traditional ensemble learning
by the fact that every part of the model ’sees’ the entire training set. Ensemble methods such
as bootstrap aggregating (”bagging”) [29] only use subsets of the training data to train a single
predictor in order to enhance generalization. In our case, using ensembles merely enhances the
expressivity of the overall model.

While the training procedure described above might seem slightly involved, we have automa-
tized everything in the NeuralXC implementation so that the end-user can train a functional by
using a single command.
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Supplementary Figure 1: Mean absolute error (MAE) of a NeuralXC model trained on 100 struc-
tures of methane and 1000 structures of ethane applied to 1000 structures of propane (data taken
from MOB-ML dataset [8]) depending on the number of hidden layers and nodes. The MAE of
PBE for the same systems (i.e. the baseline error) is 35 meV.
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Supplementary Figure 2: CPU hours per MD step with respect to system size and XC-functional
used. Note that both axes use a logarithmic scale.
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Supplementary Figure 3: Absolute errors in equilibrium intermolecular distances for all hydrogen-
bonded systems in the s66 dataset. Compared are PBE and NXC-W01, the NeuralXC model
trained on the MB-Pol dataset. For molecule names, please refer to Supplementary Table 3
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Supplementary Figure 4: One dimensional cuts of the electron density. (left) Electron density on an
axis orthogonal to the bonding axis, with the Hydrogen atom positioned at x = 0. (right) Electron
density along the bonding axis. Both plots were computed for an H2 molecule at experimental
equilibrium geometry (d = 0.74 Å), a configuration that was not contained in the training set.
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Supplementary Figure 5: Error metric for PBE and NeuralXC for all geometries contained in
training (solid circles) and test (empty circles) set. The vertical gray line indicates the experimental
equilibrium geometry used in Supplementary Figure 4.
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Supplementary Figure 6: Comparison of the difference in electron density between CCSD(T) and
PBE and NeuralXC and PBE for benzene, ethanol, malonaldehyde and toluene. Two dimensional
cuts either correspond to high-symmetry planes or planes containing a significant number of atoms
and are indicated by blue surfaces in the molecule depictions adjacent to the density plots. Black
dots inside the density plots indicate the positions of in-plane atoms. Atoms are color-coded with
red corresponding to oxygen, white to hydrogen and grey to carbon. NeuralXC models correspond
to the ones presented in the ”Data-efficiency” section of the main text.
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2 Supplementary Tables

Model/Dataset Density nmax lmax ro[Å] Network architecture
sGDML(Benzene) δρ 4 4 2 [4, 4] + [4]
sGDML(Toluene) δρ 4 4 2.5 [8, 8] + [8]
sGDML(Ethanol) δρ 4 4 2.5 [8, 4, 8] + [4, 8] + [4]
sGDML(Malonaldehyde) δρ 4 4 2.5 [4, 8, 8] + [4, 8]+ [4] + [4]
sGDML(Water) δρ 4 3 1.5 [4, 4, 4] + [4, 4]
MOB-ML δρ 5 4 2.5 [4, 4, 4]
NXC-W01 ρ 4 4 2

(1&2-body) [4, 4] + [4] + [4]
(3-body) [4]

Supplementary Table 1: Basis set parameters for the number of radial functions nmax, the max-
imum angular momentum lmax, the cutoff radius ro and the kind of density used (δρ or ρ). The
network architecture should be interpreted as follows: A fully connected neural network (FCNN)
is indicated by square brackets, inside, the number of nodes per hidden layer is specified. For
example, [4,4,4] corresponds to a FCNN with three hidden layers with four nodes each. If the
total network consists of a sum of multiple FCNN, this is signaled by a plus sign between the
networks. The overall architecture is not chosen a-priori but determined by cross-validation (for
the number of nodes) and the convergence of the iterative training procedure (for the number of
layers per FCNN).

Exp. PBE NXC ∆ PBE ∆ NXC
SiH4 [30] dist. SiH 1.480 1.504 1.487 0.024 0.008
SiO [31] dist. SiO 1.510 1.536 1.526 0.026 0.016
SH [32] dist. SH 1.341 1.365 1.356 0.024 0.015

SH2 [33] dist. SH 1.336 1.360 1.352 0.025 0.017
θ HSH 92.1 91.2 91.3 0.9 0.8

S2H2 [34] dist. SS 2.056 2.065 2.063 0.009 0.005
SH 1.342 1.373 1.362 0.031 0.020

θ SSH 97.9 98.7 98.0 0.8 0.1
SOH2 [35] dist. SO 1.662 1.691 1.689 0.029 0.027

SH 1.342 1.378 1.363 0.036 0.021
OH 0.961 0.970 0.960 0.009 0.001

θ OSH 98.6 98.8 97.6 0.2 0.9
SOH 107.2 106.7 107.1 0.5 0.1

Mean d 0.024(3) 0.014(3)
Mean θ 0.6(2) 0.5(2)

Supplementary Table 2: Bond lengths and angles for the equilibrium geometries obtained with
PBE, NXC and compared to experimental results. Distances are given in Å, bonda angles θ are
given in degrees.
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PBE NXC-W01 MP2 (ref) ∆PBE ∆NXC-W01
System

01 Water ... MeOH 1.914 1.938 1.962 0.049 0.024
02 Water ... MeNH2 1.905 1.960 2.012 0.107 0.052
03 Water ... Peptide 1.864 1.882 1.905 0.041 0.023
04 MeOH ... MeOH 1.911 1.926 1.937 0.026 0.011
05 MeOH ... MeNH2 1.921 1.952 1.969 0.048 0.017
06 MeOH ... Peptide 1.861 1.867 1.881 0.021 0.014
07 MeOH ... Water 1.940 1.944 1.985 0.046 0.041
08 MeNH2 ... MeOH 2.269 2.265 2.263 0.006 0.002
09 MeNH2 ... MeNH2 2.304 2.304 2.277 0.028 0.027
10 MeNH2 ... Peptide 2.292 2.277 2.241 0.051 0.036
11 MeNH2 ... Water 1.912 1.957 1.980 0.068 0.022
12 Peptide ... MeOH 2.038 2.038 2.015 0.023 0.023
13 Peptide ... MeNH2 2.061 2.078 2.066 0.004 0.013
14 Peptide ... Peptide 3.292 3.289 3.282 0.010 0.008
15 Peptide ... Water 2.073 2.066 2.081 0.008 0.015
16 Uracil ... Uracil (BP) 1.807 1.826 1.833 0.027 0.008
17 Water ... Pyridine 1.890 1.945 1.996 0.105 0.050
18 MeOH ... Pyridine 1.893 1.929 1.953 0.059 0.024
19 AcOH ... AcOH 1.664 1.698 1.692 0.027 0.006
20 AcNH2 ... AcNH2 1.831 1.845 1.859 0.028 0.013
21 AcOH ... Uracil 1.679 1.704 1.704 0.025 0.001
22 AcNH2 ... Uracil 1.868 1.886 1.889 0.021 0.003

Mean 0.038(6) 0.020 (3)

Supplementary Table 3: Equilibrium intermolecular distances for all hydrogen-bonded systems in
the s66 dataset calculated with PBE, NXC-W01 and MP2 (with cc-pVTZ basis; reference data
s66). Errors w.r.t. MP2 are given in the columns starting with ∆. We report the mean error and
its standard error in the last row.
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