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Web Appendix A.

Here three parametric forms are used to fit the distribution of incubation period (inter-
arrival time) I, they are Gamma distribution, Weibull distribution and Log-normal distri-
bution. Let fI and h be the pdf of I and V respectively, and let FI and H be the cdf of I
and V respectively.

Example 1. Suppose that I ∼ Γ(α, β) with density

fI(t;θ) =
βα

Γ(α)
tα−1e−βt (t > 0),

where θ = (α, β)> is unknown (α > 0, β > 0), then

h(t;θ) =
β

α
[1− Γ(t, α, β)] (t > 0),

H(t;θ) = Γ(t, α + 1, β) +
βt

α
[1− Γ(t, α, β)] (t > 0),

where Γ(u, α, β) is the cdf of Γ(α, β) at u.
Example 2. Suppose that I ∼ W (k, λ) with density

fI(t;θ) =
k

λ

(
t

λ

)k−1
exp

{
−
(
t

λ

)k}
(t > 0),

where θ = (k, λ)> is unknown (k > 0, λ > 0), then

h(t;θ) =
k

λ
Γ

(
1

k

)−1
exp

{
−
(
t

λ

)k}
(t > 0),

H(t;θ) = Γ

((
t

λ

)k
,

1

k
, 1

)
(t > 0).
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Example 3. Suppose that I ∼ LN(µ, σ2) with density

fI(t;θ) =
1√

2πσ2t
exp

{
−(log t− µ)2

2σ2

}
(t > 0),

where θ = (µ, σ2)> is unknown (σ > 0), then

h(t;θ) = exp

{
−µ− 1

2
σ2

}[
1− Φ(log t, µ, σ2)

]
(t > 0),

H(t;θ) = Φ(log t, µ+ σ2, σ2) + t exp

{
−µ− 1

2
σ2

}[
1− Φ(log t, µ, σ2)

]
(t > 0),

where Φ(u, µ, σ2) is the cdf of normal distribution N(µ, σ2) at u.

Web Appendix B. Likelihood approach for the mixture distribu-
tion

The log-likelihood of the mixture distribution can be derived by introducing a latent vari-
able. Specifically, denote δj = 1 if the jth individual in our cohort got infected at the
departure, δj = 0 if the individual got infected before departure, and tj to be the observed
time difference from the event of leaving Wuhan to symptoms onset for j = 1, . . . ,m. Note
that only {t1, . . . , tm} are observed, and {δ1, . . . , δm} are unobserved. We can rewrite this
problem as a mixture distribution below,

δj ∼ Bin(1, π), j = 1, . . . ,m.

tj | (δj = 1) ∼ fpI (·;θ), tj | (δj = 0) ∼ hp(·;θ),

and the conditional likelihood is

L(θ; t1, . . . , tm | δ1, . . . , δm) =
m∏
j=1

{fpI (tj;θ)}δj{hp(tj;θ)}1−δj

=
m∏
j=1

{δjfpI (tj;θ) + (1− δj)hp(tj;θ)}.

By integrating the unobservable {δ1, . . . , δm} out, the likelihood is reduced to

L(θ, π; t1, . . . , tm) =
m∏
j=1

{πfpI (tj;θ) + (1− π)hp(tj;θ)}.
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Hence, the estimates of parameters can be obtained by Newton-Raphson or EM algo-
rithm(Dempster et al., 1977; Booth and Hobert, 1999). Note that extra cautions need to
be taken when an EM algorithm is implemented due to the local maximum issue.

Web Appendix C. Proof of Theorem 1 and 2

To study the large-sample properties of the MLE and the likelihood ratio statisticsR1(θ0, π0)
and R2(π0), we consider the behavior of `(θ, π) for (θ>, π)> = (θ>

0 , π0)
> + n−1/2ξ with

ξ = (ξ>
1 , ξ2)

> = Op(1).
By second-order Taylor expansion and weak law of large numbers, we have

`((θ>
0 , π0)

> +m−1/2ξ) = `(θ0, π0) + u>
mξ −

1

2
ξ>Uξ + rmξ

>ξ, (S1)

where rm = op(1) uniformly for all (θ, π) in a neighborhood of (θ0, π0),

um1 = m−1/2
m∑
i=1

π0∇θf
p
I (t;θ0) + (1− π0)∇θh

p(t;θ0)

π0f
p
I (t;θ0) + (1− π0)hp(t;θ0)

,

um2 = m−1/2
m∑
i=1

fpI (t;θ0)− hp(t;θ0)

π0f
p
I (t;θ0) + (1− π0)hp(t;θ0)

,

and U = (Uij)1≤i,j≤2 with

U11 = E

{
π0∇θf

p
I (t;θ0) + (1− π0)∇θh

p(t;θ0)

π0f
p
I (t;θ0) + (1− π0)hp(t;θ0)

}⊗2
,

U12 = E

[
{π0∇θf

p
I (t;θ0) + (1− π0)∇θh

p(t;θ0)}{∇θf
p
I (t;θ0)−∇θh

p(t;θ0)}>

{π0fpI (t;θ0) + (1− π0)hp(t;θ0)}2

]
,

U22 = E

{
fpI (t;θ0)− hp(t;θ0)

π0f
p
I (t;θ0) + (1− π0)hp(t;θ0)

}2

.

Here A⊗2 = AA> for a vector or matrix A. It is straightforward to see that var(um) = U

and um
d−→ N(0, U).

Let ξ̂ = (ξ̂>
1 , ξ̂2)

> =
√
m((θ̂ − θ0)

>, π̂ − π0)
>. If (θ0, π0) is an interior point of the

parameter space, it follows from (S1) that the MLE (θ̂
>
, π̂)> = (θ>

0 , π0)
> +m−1/2ξ̂ satisfies

ξ̂ = U−1um + op(1)
d−→ N(0, U−1),
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and that
R(θ0, π0) = 2u>

mξ̂ − ξ̂>Uξ̂ + op(1) = u>
mU

−1um + op(1)
d−→ χ2

qθ+1,

where qθ is the dimension of θ. Similarly it is straightforward to see that R2(π0)
d−→ χ2

1.
This proves Theorem 1.

To proving Theorem 2, we re-express (S1) as

`((θ>0 , π0)
> +m−1/2ξ) = `(θ0, π0) + u>

m1ξ1 + u>
m2ξ2

− 1

2
ξ>
1 U11ξ1 − ξ>

1 U12ξ2 −
1

2
ξ>
2 U22ξ2 + rmξ

>ξ

= `(θ>
0 , π0)

> +
1

2
u>
m1U

−1
11 um1

− 1

2
{ξ1 − U−111 (um1 − U12ξ2)}>U11{ξ1 − U−111 (um1 − U12ξ2)}

+ u>
m1U

−1
11 U12ξ2 −

1

2
ξ>
2 (U22 − U>

12U
−1
11 U12)ξ2 + rmξ

>ξ. (S2)

Because θ0 is an interior point, when m is large, ξ1 is free from any constraint. For any
fixed ξ2, taking maximum in (S2) with respect to ξ1 leads to

ξ1 = U−111 (um1 − U12ξ2) + rm1, (S3)

where rm1 = op(1) uniformly. Putting this back in (S2), we have the profile log-likelihood

`p(π0 +m−1/2ξ2) = (um2 − U21U
−1
11 um1)ξ2 −

1

2
(U22 − U>

12U
−1
11 U12)ξ

2
2 + C + rm2ξ

2
2 ,

where C does not depend on ξ2 and rm2 = op(1) uniformly.
Because π ≤ π0 = 1, ξ2 takes only non-positive values, and `p(π0 + m−1/2ξ2) takes its

maximum at
ξ̂2 = (U22 − U>

12U
−1
11 U12)

−1(um2 − U21U
−1
11 um1)− + op(1),

where x− = min{x, 0}. Putting ξ̂2 back into (S3) leads to an approximate of ξ̂1, i.e.,

ξ̂1 = U−111

{
um1 − U12(U22 − U>

12U
−1
11 U12)

−1(um2 − U21U
−1
11 um1)−

}
+ op(1).

The fact um
d−→ N(0, U) implies that um1

d−→ N(0, U11) and

um2 − U21U
−1
11 um1

d−→ N(0, U22 − U>
12U

−1
11 U12),
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and that they are asymptotically independent. This immediately implies result (a) of
Theorem 3.

It follows from the approximates of the MLEs and (S2) that

R2(π0) = ξ̂>
2 (U22 − U>

12U
−1
11 U12)ξ̂2 + op(1)

=
(um2 − U21U

−1
11 um1)

2
−

U22 − U>
12U

−1
11 U12

+ op(1)

d−→ 1

2
χ2
0 +

1

2
χ2
1,

and

R1(θ0, π0) = u>
m1U

−1
11 um1 +

(um2 − U21U
−1
11 um1)

2
−

U22 − U>
12U

−1
11 U12

+ op(1)

d−→ 1

2
χ2
qθ

+
1

2
χ2
qθ+1.

This proves Theorem 3. It is similar to prove the circumstance if π0 = 0. �

Web Appendix D. Conditions and properties for deconvolution

Suppose the incubation period I follows a Gamma distribution Γ(α, β) with pdf fI , then
the characteristic function (chf) of I satisfies

φI(t) =

(
1− it

β

)−α
and |φI(t)|2 =

(
β2

β2 + t2

)α
.

According to Liu and Taylor (1989) and Devroye (1989), under the following conditions,
the estimator for fG in (13) at its interior point is consistent:
(C1). φS(t)/|φI(t)|2 is absolutely integrable.
(C2). The second order derivative of fG(y) exists and is continuous on [0,+∞).
(C3). The chf of I φI(t) 6= 0 for almost all t.
(C4). The kernel chf φK(t) vanishes at |t| > M for some M .
(C5). Mn →∞ and hn → 0 as n→∞.

The aim of the kernel K(·) is to smooth the empirical chf of S into an integrable
function. It is known that the best kernels are those whose chfs are the flattest near the
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origin (Davis, 1975, 1977). The bias of f̂G(y) is

bias{f̂G(y)} =
1

2
h2fG(y)

∫ y/hn

−∞
t2Kc(t)dt+ o(h2n),

where Kc(t) = a0K(t) + a1K
′(t) and(

a0
a1

)
=

(∫ y/hn
−∞ K(t)dt

∫ y/hn
−∞ K ′(t)dt∫ y/hn

−∞ tK(t)dt
∫ y/hn
−∞ tK ′(t)dt

)−1(
1
0

)
.

The variance of f̂G(y) is given in Karunamuni (2009).
An alternative to nonparametric density estimation is the parametric approach. To

accord with the generation mechanism of serial interval, it is more reasonable to post a
parametric model on generation time rather than serial interval theoretically. A potential
weakness for directly modeling the serial interval is model misspecification. An additional
condition should be satisfied to make φ̂G a proper chf:
(C6). |φ̂S(t)|/|φI(t)|2 ≤ 1.
This condition requires that the norm of estimated chf for S be declining fast near the
origin and is too strong for modeling observed data. For example, normal S and Gamma
I may not satisfy (C6).

Web Appendix E. The goodness-of-fit test for incubation period
modeling

The goodness-of-fit test is performed as follows. Divide the non-negative real line into 17
parts: [k − 1.5, k − 0.5) for k = 1, . . . , 16, and [15.5,+∞). The goodness-of-fit χ2 statistic
is

X2 =
17∑
k=1

(Ok − Ek)2

Ek
,

where Ek and Ok are the expected and observed number of cases in the kth interval:

Ek = m[π̂FI(k− 0.5; θ̂) + (1− π̂)H(k− 0.5; θ̂)]−m[π̂FI(k− 1.5; θ̂) + (1− π̂)H(k− 1.5; θ̂)].

The degree of freedom of X2 is 17− 3− 1 = 13, since there are three parameters in total.
The 0.95 quantile of chi-squared distribution with 13 degrees of freedom is 22.36.
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