
Supplementary material

CX3CL1/CX3CR1 axis attenuates early brain injury via promoting the delivery of exosomal microRNA-124 from neuron to microglia after subarachnoid hemorrhage

Supplemental Figure 1. The medical images of clinical samples.

Supplemental Table 1. The information of clinical samples.

Group No.	No.	Age	Gender	Diagnosis	GCS score	Hunt-hess	Operation time	Part of the sample	Prognosis
	1100	g-		2-1-8		rating	(day after SAH)	That of the sample	110g.10015
	1	63	Male	Metastatic					
	1	63 Male		encephaloma					
	2 68	60 M	Male	Metastatic					
		08	68 Male	encephaloma					
Non-SAH	3	72	Male	Meningioma					
	4	65	Female	Glioma					
	5	42	Male	Glioma					
		=-		Aneurysms rupture with subarachnoid		2.1	-	Brain tissue around right middle	
	1	72	72 Female 3-5-6 3+1 hemorrhage	3+1	7	cerebral artery aneurysm	Poor		
SAH 2	2	65	5 Male	Aneurysms rupture with subarachnoid	rsms rupture with subarachnoid 4-5-6 hemorrhage	1	1	Brain tissue around right middle	Good
	2	03		hemorrhage				cerebral artery aneurysm	
	3	57	57 Female	Aneurysms rupture with subarachnoid	4-5-6	1	7	Brain tissue around anterior	Good
	3	31		hemorrhage			,	communicating artery	

Supplemental Table 2. Statistical table

	Description	Hours/days after SAH or sham	In vivo	Test used	Stat-value	One- or two-tailed P	
		surgery or OxyHb	vitro			value	
		treatment					
Fig 2c	Relative protei	n 3h, 6h, 12h, 24h,	in vivo	Ordinary	F(6,35)=5.609, P<0.001;	Two-tailed	

	level of CX3CL1	72h, 1w		one-way	Bon	nferroni's post hoc test, P=0.0078 (6h vs	
				ANOVA	shan	m), P=0.0014 (12h vs sham); η ² =0.4902	
Fig 2d	Relative protein	3h, 6h, 12h, 24h,	in vivo	Ordinary	F(6,	,34)=7.249, P<0.001;	Two-tailed
	level of CX3CR1	72h, 1w		one-way	Bon	nferroni's post hoc test, P=0.0183 (6h vs	
				ANOVA	shan	m), P=0.0174 (12h vs sham); η ² =0.5019	
Fig 3c	Relative protein	12h	in vivo	Ordinary	F(3,	,20)=15.97, P<0.001;	Two-tailed
	level of CX3CL1			one-way	Tuk	key's post hoc test, P<0.001 (SAH vs	
				ANOVA	shan	m), P=0.0054 (OE vs Vector); η ² =0.7055	
Fig 3d	Relative protein	12h	in vivo	Ordinary	F(3,	,20)=9.868, P<0.001;	Two-tailed
	level of CX3CR1			one-way	Tuk	key's post hoc test, P=0.0085 (SAH vs	
				ANOVA	shan	m), P=0.0043 (OE vs Vector); η ² =0.5967	
Fig 3f	FJC	12h	in vivo	Ordinary	F(3,	,20)=136.3, P<0.001;	Two-tailed
				one-way	Tuk	key's post hoc test, P<0.001 (SAH vs	
				ANOVA	shan	m), P<0.001 (OE vs Vector); η ² =0.9112	
Fig 4a	Neurobehavioral	24h	in vivo	Mann-Whitney	P<0	0.001 (SAH vs sham), P<0.001 (OE vs	Two-tailed
	scores			U test	Vect	ctor)	
Fig 4b	Adhesive-removal	1d, 3d, 7d, 14d	in vivo	Two -w	y F(3,	,36)=66.29, P<0.001;	Two-tailed
	time			ANOVA	Tuk	xey's post hoc test, P<0.001 (SAH vs	
					shan	m), P=0.0027 (OE vs Vector);	
					Bon	nferroni's post hoc test, P<0.001 (1d: OE	
					vs V	Vector); η ² =0.6866	
Fig 4c	Rotarod test	1d, 3d, 7d, 14d	in vivo	Two -w	y F(3,	,36)=153, P<0.001;	Two-tailed
				ANOVA	Tuk	key's post hoc test, P<0.001 (SAH vs	
					shan	m), P<0.001 (OE vs Vector);	
					Bon	nferroni's post hoc test, P=0.0048 (3d: OE	
					vs V	Vector); $\eta^2 = 0.7270$	

Fig 4d	Escape latency	22d-26d	in vivo	Two	-way	F(3,20)=59.54, P<0.001;	Two-tailed
				ANOVA		Tukey's post hoc test, P<0.001 (SAH vs	
						sham), P<0.001 (OE vs Vector); η^2 =0.7899	
Fig 5b	Relative protein	n 12h	in vivo	Ordinary		F(3,20)=15.77, P<0.001;	Two-tailed
	level of CD45			one-way		Tukey's post hoc test, P<0.001 (SAH vs	
				ANOVA		sham), P=0.0015 (OE vs Vector); η^2 =0.7029	
Fig 5c	Relative protein	n 12h	in vivo	Ordinary		F(3,20)=13.44, P<0.001;	Two-tailed
	level of MHC Class	S		one-way		Tukey's post hoc test, P=0.0024 (SAH vs	
	Π			ANOVA		sham), P=0.0011 (OE vs Vector); η^2 =0.6687	
Fig 5d	Relative protein	n 12h	in vivo	Ordinary		F(3,20)=8.989, P<0.001;	Two-tailed
	level of C/EBPα			one-way		Tukey's post hoc test, P=0.0075 (SAH vs	
				ANOVA		sham), P=0.0081 (OE vs Vector); η^2 =0.5742	
Fig 5g	Relative protein	n 12h	in vivo	Ordinary		F(3,20)=8.37, P<0.001;	Two-tailed
	level of MCPIP			one-way		Tukey's post hoc test, P=0.0031 (SAH vs	
				ANOVA		sham), P=0.0482 (OE vs Vector); η^2 =0.5566	
Fig 5h	Relative protein	n 12h	in vivo	Ordinary		F(3,20)=9.627, P<0.001;	Two-tailed
	level of Runx1			one-way		Tukey's post hoc test, P=0.0037 (SAH vs	
				ANOVA		sham), P=0.0088 (OE vs Vector); $\eta^2\!\!=\!\!0.5911$	
Fig 6a	Relative level of	f 12h	in vivo	Ordinary		F(3,20)=75.18, P<0.001;	Two-tailed
	TNF-α			one-way		Tukey's post hoc test, P<0.001 (SAH vs	
				ANOVA		sham), P<0.001 (OE vs Vector); $\eta^2\!\!=\!\!0.9185$	
Fig 6b	Relative level of	f 12h	in vivo	Ordinary		F(3,20)=91.55, P<0.001;	Two-tailed
	IL-1α			one-way		Tukey's post hoc test, P<0.001 (SAH vs	
				ANOVA		sham), P<0.001 (OE vs Vector); $\eta^2\!\!=\!\!0.8985$	
Fig 6c	Relative level of	f 12h	in vivo	Ordinary		F(3,20)=46.58, P<0.001;	Two-tailed
	C1q			one-way		Tukey's post hoc test, P<0.001 (SAH vs	

		ANOVA	sham), P<0.001 (OE vs Vector); η^2 =0.8527	
Fig 7d	Relative level of 12h	in vitro Ordinary	F(5,12)=93.1, P<0.001; Two-tail	led
	exosomal miR124	one-way	Tukey's post hoc test, P<0.001	
		ANOVA	(Control+GW4869 vs Control+Vehicle),	
			P<0.001 (OxyHb vs Control), P<0.001	
			(OxyHb +Vehicle vs Control+Vehicle),	
			P<0.001 (OxyHb+GW4869 vs OxyHb	
			+Vehicle); η ² =0.9749	

Supplemental Table 3. Modeling situation.

Groups	Mortality Rate	Excluded
Experiment 1		
sham	0% (0/12)	0
SAH (3h,6h,12h,24h,72h,1w)	15.6% (14/90)	4
Experiment 2		
sham	0% (0/12)	0
SAH	12.5% (2/16)	2
SAH+Vector	25% (4/16)	0
SAH+OE	22.2% (4/18)	2
Experiment 3		
sham	0% (0/10)	0
SAH	21.4% (3/14)	1
SAH+Vector	14.3% (2/14)	2
SAH+OE	15.4% (2/13)	1
Total		
sham	0% (0/34)	0