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A. Appendix

A.1. Analytic derivation of the aggregate-level model for probit regression
We derive the aggregate-level model for probit regression, where g(·) is the probit link function
g(p) = Φ−1(p) (the standard Normal inverse CDF). To begin with, let us consider the one-
parameter Binomial approximation to the aggregate likelihood:

y•jk ∼ Bin(Njk, p̄jk),

p̄jk = θ•jk =

∫
X

Φ
(
ηjk(x)

)
fjk(x) dx.

(A.1)

This integral does not always have a closed form solution; however, if the covariates are
multivariate-Normal, x jk ∼ MVN(m jk,Σjk), then we have

p̄jk = Φ
(
ηjk(m jk)

(
1 + (β1 + β2,k)

T
Σjk(β1 + β2,k)

)−1
2

)
. (A.2)

Themultivariate Normal scenario offers some insight into the relationship betweenML-NMR
and the naïve approach of “plugging in” mean covariate values. Equation (A.2) can be viewed as
an adjustment to the naïve model, with the adjustment term involving the covariate covariance
matrix Σjk accounting for the integration over the population. Examining the adjustment term,
we notice that this depends upon

• The covariance of prognostic variables and effect modifiers, and the strength of each,
through βT

1Σjkβ2,k . This is large when highly prognostic variables are correlated with
strong effect modifiers, or when strong effect modifiers which are also highly prognostic
take a wide range of values in the j-th study population (the population variance is large).

• The covariance of effect modifiers and their strength, through βT
2,kΣjβ2,k . This is large

when strong effect modifiers are highly correlated, or when strong effect modifiers take on
a wide range of values in the j-th study population (the population variance is large).

This lends theoretical justification to intuitive thinking for when effect modification may lead to
aggregation bias. In particular, aggregation bias is expected to be small if either effect modifiers
are weak, or the within-study variance of effect modifiers is small. The covariance inequality
bounds the covariance between two variables by their standard deviations, |cov(X1,X2)| ≤√

var(X1) var(X2); small within-study variance in the effect modifiers is therefore sufficient to
also limit the aggregation bias due to correlations.

To use the two-parameter Binomial approximation to the Poisson Binomial likelihood (see
equation 4), we additionally need to evaluate p̄2

jk . The derivation is similar to that for p̄jk ,
except now the integration is over the squared linear predictor:

p̄2
jk =

∫
X

g−1 (ηjk(x))2 fjk(x) dx. (A.3)

For probit regression with g−1(·) = Φ(·), and multivariate Normal covariates, the integration
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is carried out as follows:

p̄2
jk =

∫
X

Φ(ηjk(x))2 fjk(x) dx

= Φ
(
ηjk(m jk)

(
1 + (β1 + β2,k)

T
Σjk(β1 + β2,k)

)−1
2

)
− 2 T

(
ηjk(m jk)

(
1 + (β1 + β2,k)

T
Σjk(β1 + β2,k)

)−1
2 ,

(
1 + 2(β1 + β2,k)

T
Σjk(β1 + β2,k)

)−1
2

)
(A.4)

where T(·, ·) is Owen’s T function, which may be evaluated using fast numerical methods (e.g.
quadrature).

For skew covariates, evaluation of the aggregation integral (1d) is troublesome: analytic
integration for both log-Normal and Gamma distributed covariates is not straightforward. In an
ecological context, Salway andWakefield (2005) noted that estimates remained biasedwhen skew
covariates were treated as Normal (although less so than the naïve approach), and uncertainty
was underestimated.

A.2. Analytic integration with the logit link function

When using the logit link function g(p) = log
(

p
1−p

)
, as in logistic regression, the integral (1d)

does not have a closed form solution. Previous authors have suggested approximating the logit
link by a probit (Salway and Wakefield, 2005; Demidenko, 2004), for example

One-probit approx.: logit−1(η) ≈ Φ
(

16
√

3
15π η

)
(A.5a)

Two-probit approx.: logit−1(η) ≈ 0.4353 Φ
( η

2.2967

)
+ 0.5647 Φ

( η

1.3017

)
(A.5b)

The two-probit approximation is particularly robust, and still results in a proper likelihood
distribution as the coefficients sum to one. Higher order approximations are possible and can be
even more accurate, but do not necessarily result in proper likelihood distributions.

Continuing with the one-probit approximation first, the average success probability on treat-
ment k in the j-th study is then approximately

p̄jk ≈

∫
X

Φ
(

16
√

3
15π ηjk(x)

)
fjk(x) dx. (A.6)

If the covariates are multivariate-Normal, x j ∼ MVN(m j,Σj), then we have (Salway and Wake-
field, 2005)

p̄jk ≈ logit−1©­«ηjk(m j)

(
1 +

(
16
√

3
15π

)2
(β1 + β2,k)

T
Σj(β1 + β2,k)

)− 1
2 ª®¬. (A.7)
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Derivation proceeds similarly for the two-probit approximation with multivariate-Normal
covariates x j ,

p̄jk ≈ 0.4353 Φ

(
ηjk(m j)

2.2967

(
1 + 2.2967−2(β1 + β2,k)

T
Σj(β1 + β2,k)

)− 1
2
)

+ 0.5647 Φ

(
ηjk(m j)

1.3017

(
1 + 1.3017−2(β1 + β2,k)

T
Σj(β1 + β2,k)

)−1
2
)

(A.8)

A.3. Imputing a correlation structure with copulæ
We typically only have access to published marginal covariate information for the AgD trials,
and therefore have no information on the correlation structure between the covariates. Rather
than assuming that all correlations between covariates in the AgD are zero (which may be
unreasonable), we can instead assume that the correlation structures are similar in AgD and IPD.
To account for this, we compute a correlation matrix Ω for the AgD trials from the IPD trials (or
a representative subset), and impose this upon the Sobol’ integration points ũ using a Gaussian
copula (Nelsen, 2006). This is equivalent to applying the inverse CDF Φ−1

Ω
(·) of the multivariate

Normal with correlation matrix Ω, and then the standard multivariate Normal CDF Φ(·),

ũ∗ = Φ(Φ−1
Ω
(ũ)),

to obtain correlated Sobol’ points ũ∗. (In practice this is computed component-wise condition-
ally; we use the implementation in the R package copula (Yan, 2007).) The correlated Sobol’
points are then transformed using the inverse CDF method to match the marginal covariate
distributions reported in the AgD trials,

x̃jk;l = F−1
jk;l(ũ

∗
l ) for l = 1, . . . , L,

where F−1
jk;l(·) is the inverse CDF of the marginal distribution assumed for the l-th covariate x̃jk;l

on treatment k in study j. The resulting integration points x̃ jk capture the correlations between
the covariates (e.g. longer duration of psoriasis is correlated with having previous systemic
treatment) whilst preserving the marginal distribution for each covariate.

A.4. Assessing inconsistency
ML-NMR, like standard IPD and AgD NMA, makes an assumption of consistency that is
enforced through a set of consistency equations dab = db − da. For ML-NMR, consistency
applies to both the individual-level treatment effects, γab = γb − γa, and the effect modifier
interactions, β2,ab = β2,b − β2,a. The causes of inconsistency in ML-NMR are the same as the
causes of heterogeneity described in section 2.4. For example, there may be effect modifiers that
have not been included in the model or other model misspecification, the assumed joint covariate
distributions used to adjust the results from aggregate studies may be incorrect, or the shared
effect modifier assumption (if it was used) may be invalid. Attempts may be made to rectify
these issues in a revised model—if data permits—and the revised model may then be assessed
for inconsistency. To assess inconsistency, we can use the same approaches as standard IPD and
AgD NMA—such as the unrelated mean effects model (Dias et al., 2011b), and node-splitting
models (Dias et al., 2010).
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Unrelated mean effects
The unrelatedmean effects (UME)model (Dias et al., 2011b) treats all contrasts—both basic (i.e.
against treatment 1) and functional—as independent parameters, without imposing consistency.
The UME model needs to be written with the study-specific baselines referring to a reference
arm in each trial (the “baseline shift” parameterisation), rather than the reference treatment 1,
since the latter imposes consistency implicitly. For random effects ML-NMR (9), we must also
consider the EM interaction terms, and whether or not we allow these to be inconsistent too
(Donegan et al., 2017). The linear predictor and random effects structure of the UME model for
RE ML-NMR are written as

ηjk(x) = µ
(t1)
j + xT(β1 + β2,t1k) + δjt1k (A.9a)

δjt1k ∼ N(γt1k, τ
2) (A.9b)

cor(δjt1a, δjt1b) = 0.5 (A.9c)

for a study j with treatment t1 in arm 1, where µ(t1)j is the study-specific baseline with respect to
t1.

If we apply the consistency equations to the EM interactions, β2,ab = β2,b − β2,a, then (A.9)
only relaxes consistency in the treatment effects. There can also be inconsistency in the EM
interactions (Donegan et al., 2017); to assess this as well, we instead place independent prior
distributions on β2,ab, such as N(0, σ2

β2
) for a suitable prior variance σ2

β2
. However, this requires

sufficient data on each contrast to estimate independent interactions. This may not be possible,
for example if there are contrasts which are only informed by a small number of AgD studies.

An intermediate approach is possible when the shared EM assumption (section 2.3) is used
to fit the ML-NMR model, so that the regression coefficients β2,k for a set of treatments
k ∈ T are all equal. In this case, we can use the shared EM assumption—which implies that
certain interactions are zero or equal to each other—and allow the remaining interactions to
be inconsistent. To achieve this, consider (without loss of generality) that every treatment is
assigned to a mutually exclusive set T1,T2, . . . (some treatments may be in a set by themselves).
Then, using the shared EMassumption, EM interactions for contrasts between any two treatments
within a given setT are equal to zero, β2,ab = 0 for any two treatments a, b ∈ T . EM interactions
for contrasts between treatments in any two different sets T1,T2 are equal, β2,a1a2 = β2,b1b2 for
any treatments a1, b1 ∈ T1 and a2, b2 ∈ T2, and are assigned a prior distribution such as N(0, σ2

β2
).

This allows us to assess inconsistency of the shared EM interactions, and such a model should
always be identifiable when the corresponding standard (consistency) ML-NMR model with
shared EM interactions is identifiable.

In any case, evidence for inconsistency is then based on comparing the model fit (e.g. using
residual deviance and DIC) between the ML-NMR model assuming consistency and the UME
model without consistency.

Node-splitting
The node-splitting approach for network meta-regression models (Donegan et al., 2017) is
naturally applicable to ML-NMR in the same manner as IPD network meta-regression. For a
given contrast b′ vs. a′, the node-splitting model splits the estimation of the relative effect γa′b′
and effect modifier interactions β2,a′b′ into parameters estimated by direct evidence only, γD

a′b′
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and βD
2,a′b′, and parameters estimated by the indirect evidence from the rest of the network,

γI
a′b′

and βI
2,a′b′. To achieve this, the random effects ML-NMR model (9) remains the same

for studies not including both a′ and b′ treatment arms. For studies including both a′ and
b′ treatment arms, we choose to re-parameterise the model with a′ as the reference treatment
within these studies. Mathematically, we write out the linear predictor and random effects for
this node-splitting model as

For studies without both a′ and b′ treatment arms:

ηjk(x) = µ
(1)
j + xT(β1 + β2,k) + δjk (A.10a)

δjk ∼ N(γk, τ2) (A.10b)
cor(δja, δjb) = 0.5 (A.10c)

For studies with both a′ and b′ treatment arms:

ηja′(x) = µ
(a′)
j + xTβ1 (A.10d)

ηjb′(x) = µ
(a′)
j + xT(β1 + βD

2,a′b′) + δja′b′ (A.10e)

ηjk(x) = µ
(a′)
j + xT(β1 + β2,k − β2,a′) + δja′k for k , a′, b′ (A.10f)

δja′b′ ∼ N(γD
a′b′, τ

2) (A.10g)
δja′k ∼ N(γk − γa′, τ2) for k , a′, b′ (A.10h)

cor(δja′a, δja′b) = 0.5 for a, b , a′, b′ (A.10i)
cor(δja′k, δja′b′) = 0 for k , a′, b′ (A.10j)

where the re-parameterised study-specific baselines with respect to treatment a′ are denoted
by µ

(a′)
j , and we write the study-specific baselines with respect to treatment 1 as µ(1)j = µj

for additional clarity. As usual we set γ1 = δj1 = 0 and β2,1 = 0. If there are multi-arm
studies with both a′ and b′ treatment arms, then the other random effects δja′k with k , b′ are
uncorrelated with δja′b′, but are still correlated between themselves with cor(δja′a, δja′b) = 0.5
for a, b , a′, b′ (assuming homogeneous τ2). The indirect estimates γI

a′b′
and βI

2,a′b′ are obtained
from the consistency equations

γI
a′b′ = γb′ − γa′,

βI
2,a′b′ = β2,b′ − β2,a′ .

(A.11)

The node-splittingmodel as written in (A.10) splits the EM interaction terms for all covariates
at once. Alternatively, a separate node-splitting model could be fitted for each covariate in turn,
where βD

2,a′b′ is broken down into a split interaction for one covariate, β
D
2,a′b′;l, and the consistency

equations are applied for the remaining covariates β2,a′b′;l = β2,b′;l − β2,a′;l. The latter approach
may be more tractable in scenarios with smaller amounts of data on the b′ vs. a′ contrast and/or
large numbers of effect modifying covariates, since there are only 2 more parameters than the
standard RE ML-NMR model (γD

a′b′
and βD

2,a′b′;l), as opposed to L + 1 more when splitting all
EM interactions at once (γD

a′b′
and βD

2,a′b′), where L is the number of covariates.
Furthermore, there may be insufficient data on the b′ vs. a′ contrast even to node-split the

EM interaction terms one covariate at a time, for example if the direct evidence consists of only
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a small number of AgD studies. In this case, we may be able to assess inconsistency in the
treatment contrast γa′b′ by node-splitting into γD

a′b′
and γI

a′b′
, but not in the EM interactions,

keeping the consistency equations β2,a′b′ = β2,b′ − β2,a′.
As with the unrelated mean effects model (appendix A.4), evidence for inconsistency based

on comparing the model fit (e.g. using residual deviance and DIC) between the ML-NMRmodel
with and without node-splitting, and also checking whether the heterogeneity variance τ2 is
reduced. The graphical summaries described by Donegan et al. (2017) may also be utilised.

A.5. Results for plaque psoriasis example

Fig. A.1. Empirical integration error for p̄ over the entire posterior of the model parameters, estimated as
a relative difference from the final estimate with 10,000 integration points (at each posterior sample). The
dashed line is ±Ñ−1, showing that the integration error rate is of this order.
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Fig. A.2. Empirical integration error for p̄2 over the entire posterior of the model parameters, estimated as
a relative difference from the final estimate with 10,000 integration points (at each posterior sample). The
dashed line is ±Ñ−1, showing that the integration error rate is of this order.
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Fig. A.3. Estimated contrasts at the population level, for each pair of treatments in each study population.
Note that the interval for MAIC is a 95% Confidence Interval, as MAIC is a frequentist method.



Table A.1. Estimated proportion of individuals achieving PASI 75 on each treatment in each study population, along
with 95% Credible Intervals, for each method. The observed proportions are accompanied by 95% Confidence
Intervals, calculated on the probit scale.
* MAIC estimate is 84.74 (78.54, 89.62).

Treatment

Study population Method Placebo Ixekizumab Q2W Ixekizumab Q4W Etanercept Secukinumab 150 mg Secukinumab 300 mg

FIXTURE Observed 4.94 - - 43.96 66.97 77.09
(2.85, 7.90) (38.47, 49.56) (61.59, 72.05) (72.11, 81.56)

ML-NMR 3.83 85.93* 78.46 46.10 66.96 77.07
(2.58, 5.38) (81.58, 89.64) (72.84, 83.27) (40.93, 51.11) (61.82, 71.72) (72.72, 81.34)

UNCOVER-1 Observed 3.94 89.15 82.64 - - -
(2.31, 6.24) (85.83, 91.91) (78.73, 86.09)

ML-NMR 4.76 88.72 82.19 46.57 71.59 80.79
(3.37, 6.47) (86.48, 90.79) (79.10, 85.11) (40.92, 52.22) (63.69, 78.78) (73.72, 86.93)

UNCOVER-2 Observed 2.41 90.00 77.46 41.74 - -
(0.66, 6.05) (86.37, 92.94) (72.68, 81.75) (36.57, 47.04)

ML-NMR 4.06 86.59 79.31 43.05 67.92 77.83
(2.80, 5.66) (84.20, 88.88) (76.35, 82.11) (39.23, 46.97) (60.01, 75.19) (70.69, 84.00)

UNCOVER-3 Observed 7.29 87.50 85.30 53.40 - -
(4.04, 11.93) (83.77, 90.64) (81.34, 88.70) (48.26, 58.49)

ML-NMR 6.23 90.33 84.41 51.69 74.52 83.13
(4.48, 8.35) (88.35, 92.20) (81.74, 86.94) (47.55, 55.94) (67.41, 80.93) (76.49, 88.31)


