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. DEcode . ExPecto

Supplementary Figure 1. Performance comparison of DEcode with ExPecto with respect to correlation coefficient.
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Supplementary Figure 2. Correlation between DeepLIFT scores vs log2-TPMs for each of TFs and RNABPs.

Spearman’s correlation was used to evaluate the relation between DeepLIFT scores vs log2-TPMs. The Benjamini—

Hochberg procedure was used to control the false discovery rate at 5%.
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Supplementary Figure 3. Relationships of regulators’ DeepLIFT scores with their log2-TPMs with or without brain
tissues. Spearman’s correlations between DeepLIFT scores vs log2-TPMs for each of TFs and RNABPs were computed
using all 53 tissues and 43 tissues without brain tissues, respectively. The Spearman’s correlations from the two sets of
tissues were contrasted by a scatter plot.
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Supplementary Figure 4. The overlap between the key regulators for the median absolute expression levels and LoF
intolerant genes. The LoF intolerant genes were split into genes intolerant to heterozygous LoF mutations and genes
intolerant to homozygous LoF mutations.
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Supplementary Figure 5. The overlap between the key regulators for the fold-change across 53 tissues in the
transcript-based model and external functional gene sets.



- pooig 910ym

- ploJAyL

- (Ba| Jlamo) pasodx3 ung — ups
-[elqiL — anIeN

- [BIBIS — 3PS

- Bun

- Bsoony\ — snbeydosg

- plowbig - uojon

-onss|| Alewwel - jsealg
- sndweooddiH - ureig

- X810) — uleig

- [e1qiL — Aty

- eloy — Alaly

- snosuenogns — asodipy

-onssi|

e

1.5-
5
0.0-

= o
abueyo pjoj—-60] Jo aoueleA

Data
Supplementary Figure 6. The variance of gene expression between tissues and within tissues. We computed variances

in log-fold changes based on mean TPMs across 53 tissues and those based on TPMs across individuals in each tissue.
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Supplementary Figure 7. The predictive performances of the person-specific models. We computed Spearman’s
correlation between the predicted gene expression and the actual gene expression for each individual. We filtered out
person-specific predictions from the models whose performances on validation data were less than 50% percentile of all
individuals in each tissue.
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set. The bar plots show Spearman’s correlation between t-statistics of DE using the predicted and the actual gene

expression.
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Supplementary Figure 9. Comparison of the multi-task model with the single-task model. Boxplots contrasts
predictive performance of the multi-task model with the single-task model for the fold-change across 53 tissues and
randomly selected 50 lung samples. The paired sample t-test was used to assess the statistical significance of the
differential performance.
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Supplementary Figure 10. Structures of deep neural networks in DEcode.
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Supplementary Figure 11. Overview of DEcode model building pipeline for tissue-specific expression.
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Supplementary Figure 12. Overview of DEcode model building pipeline for person-specific expression.

10



