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Section S1. Measurement of Student Capital 

 

 There are conceptual reasons for why “credits that a student could earn if they had to” is 

a good way to measure student capital. For this, it useful to look at the process of earning a 

degree through a student’s eyes. Attending college is a large commitment. It is reasonable to 

assume that students who have decided to earn a degree are marshalling all the resources they 

reasonably can towards making progress. Furthermore, if we think about a student’s own 

judgment of what progress toward a degree means, it likely consists of taking classes and earning 

credits until they have earned enough to graduate. So it is reasonable that a student would put as 

many of their own resources as reasonably possible towards earning credits. Therefore, the 

number of credits they could earn makes sense as a measure of their student capital. 

 Note that our metric doesn’t depend on the speed at which students earned credits. Unlike 

popular conceptions of full-time college students at highly selective universities, community 

college students have varied and chaotic enrollment patterns. Most are enrolled part-time at some 

point in their college career, and many take at least one term off before returning to school (55). 

We assume that students marshal the resources they need to be successful at the best speed that 

they can. This just takes longer for some students than for others. Students with limited resources 

may need to take time off to, for instance, work to earn more money or address the challenges of 

life. 

 

 

Section S2. Modeling Distributions & Inequality 

 

 We can think of inequality as the unequal distribution of a certain resource, such as 

income, wealth, social capital, educational success, high-speed internet access or health 

insurance. It is worth looking at how inequality is distributed in other areas where quantitative, 

fine-grained data is available. Income is probably the most heavily studied type of inequality, 

because tax data is readily available in many countries. A wide variety of parametric models 

have been used to describe income distributions including the Weibull, Dagum, and Singh-

Maddala distributions (56). Generally speaking, models with more parameters will tend to fit 

data better at the cost of interpretability. Given von Neumann’s statement that he could fit an 

elephant using four parameters (57), a practical approach to understanding distributions might be 

to find the simplest model that one can meaningfully interpret and use (58). In studying Lorenz 

curves of income, (59) found a one parameter family of Lamé curves and used it to build a 

“trickle-up” explanation of income growth. Because different forces might dominate different 

ranges of a distribution of inequality, another method is to focus on certain segments of the 

distribution. Probability distributions of income seem to be exponential between the 10th and 

90th percentile, and look like a power law for high earners (24, 49).  Nirei & Souma (24) 

explained this two-tier structure using a model which combined linear wage growth with 



exponential asset growth. In a more information-theoretic approach, Dragulescu & Yakovenko 

(34) derive the exponential portion of the distribution by maximizing entropy subject to the 

conservation of money.  

 Wealth distributions have also been studied, though less deeply because of the lack of 

records on wealth. It’s clear that the high end of the wealth distribution follows a power law (49, 

60, 61), consistent with a rich-get-richer mechanism. There is evidence that some portion of the 

middle wealth levels behave exponentially. However, this varies widely by country. In many 

countries, the net wealth owned by the bottom 50% of the population is near zero, or even 

negative (62). This likely relates to the fact that survival without wealth is easier than survival 

with no income. 

 Another type of inequality involves social capital. Most people are familiar with the 

incredible popularity of certain social media stars. At the higher end, social media follower 

distributions tend to follow heavy-tailed behavior found in power law and log-normal 

distributions (47, 63), consistent with a rich-get-richer effect (64). Though some distributions of 

social network degree follow a power law with exponential cutoff (65).  In this context, social 

media networks are informational networks, where the marginal cost of an additional follower is 

effectively zero, and the social capital might be considered as one’s ability to be heard. In cases 

where individuals need to expend time or resources to maintain friendships, there are limits on 

the number of friends a single individual has (66, 67).  

 

Section S3. More on Data and Methods 

 

Fractional Credit Values To ensure that we could use discrete distribution functions in R, we 

rounded all fractional credit values to the nearest integer (<0.4% of data points). 

 

Estimate of G We could estimate the best fit parameter for each possible distribution of student 

capital without estimating distributions of transfer and graduation. However, to validate the data, 

we needed to estimate the distribution of the points where students would graduate or transfer. 

Because of the non-regular nature of student graduation patterns, we fit this distribution at each 

credit level individually. Specifically, if 𝐺𝑘 is the probability that a randomly drawn student in a 

given group would graduate at exactly 𝑘 credits, we estimated each 𝐺𝑘 as its own parameter. To 

do this, we numerically maximized the following term in the log-likelihood function. This was 

the term that only involved 𝐺𝑘. 

log ℒ𝐺 = [ ∑(1 − 𝑦̌𝑖) log 𝐺𝑥𝑖
+ 𝑦̌𝑖 log ( ∑ 𝐺𝑘

∞

𝑘=𝑥𝑖+1

)

𝑖

] 

 

Because most classes in the Washington community college system were 5 credit classes, the 

inferred probability tends to be larger when 𝑘 is a multiple of 5. This distribution was done for 



each cohort individually. The inferred values for the combined set of students from all 140 

cohorts is shown in Figure S5. To aid interpretation, the same values smoothed by a spline are 

shown in Figure S6. 

 

Parametric Validation using QQ Plots We checked each parametric model – normal, 

exponential, and power law models – using the following procedure: 

 

1. Fit the model to a given dataset, including finding the parameters for both the distribution 

of student capital 𝑌𝑘 and the distribution of success points, 𝐺𝑘. 

2. Generate a synthetic dataset using the fitted parameters. 

3. Compare the synthetic dataset to the real dataset using QQ plots. If the model is a good 

fit, then the two models should compare well. 

 

A visual description of this process is shown in Figure S7. The QQ plots show that the 

exponential models fit very well, and that the power laws don’t fit at all. A full set of QQ plots, 

one for each college-year cohort, is shown at the end of the appendix. Some cohorts fit the 

exponential model worse than others. Future work might consider exploring the source of this 

variation. 

 

 

Section S4. A Note on the Normal Distribution / Cognitive Ability Model   

 

 In our inference of the cognitive ability model, we found that the inferred mean of the 

truncated normal distributions were all 𝜇̂ = 1. This was also the minimum value that our 

algorithm would allow. To be thorough, we explored the case where the mean was zero or 

negative. We consider a couple cases. 

 First, assume that the mean is taken over all degree-seeking transfer students who started 

a given community college during the same year, and that the left tail of the distribution is just 

those students who enrolled but didn’t earn credits. We would then expect that at least half of 

students who enrolled did not earn any credits. In our initial data cleaning, we had excluded all 

students who had enrolled for a positive number of credits, but earned none. We did this because, 

anecdotally, we had been told that many of those students mistakenly claimed to be degree-

seeking transfer students on their application. So we went back and re-included those students in 

the cohort. Students who enrolled and earned 0 credits made up 7.2% of this larger population of 

students. This is far less than half, which is not consistent with 𝜇̂ ≤ 0. 

 One might also claim that the entire not-necessarily-college-going population is normally 

distributed, and that the students who actually earn credits in community college are in the right 

tail of this distribution. Despite the fact that the open-access nature of community college 

admissions and the incredible diversity of community college students calls this claim into strong 

doubt, we explore this hypothesis numerically. Unfortunately, our numerical algorithm for 

optimizing log-likelihood was not designed for this range. So, for two cohorts we graphically 



found the maximum of the log-likelihood function using this model. For College 20 Cohort 1, we 

found a maximum likelihood at 𝜇̂ = −2148, 𝜎̂ = 441. For College 111, Cohort 4, we found a 

maximum likelihood at 𝜇̂ = −3061, 𝜎̂ = 629. Both of these statistics would suggest that 

community college students who earned any credits were 4.8 standard deviations above the mean 

and in the top 0.00006% of the population. Since the population of Washington is roughly 7.5 

million people, this would imply that only 4 people in the state could earn college credits. 

 This exploration shows us that the log-likelihood function of this model is really 

pathological in this case, and does not lead to interpretable results. The cognitive ability model 

just does not make sense when it comes to earning credits in community college. 

 

 

Section S5. The Exponential Distribution as it Arises from Bernoulli Trials 

 

Entropy maximization is not the only way that exponential distributions arise. Another method 

for generating exponential distributions comes from repeated Bernoulli trials. This is similar to 

the mechanism involved in radioactive decay. We explain this idea here, and then explain why 

we think it doesn’t approximate student capital. Consider a large group of students with identical 

coins. The coins have probability 𝑞 of coming up tails, and 1 − 𝑞 of coming up heads. If a coin 

comes up tails, they add one credit to their record and flip again. If the coin comes up heads, they 

stop flipping and leave school. Then the probability of any student earning exactly 𝑘 credits will 

be the exponential distribution 𝑃(𝑘) = (1 − 𝑞)𝑞𝑘.  

 One might imagine a group of students working hard at school with random life events 

causing them to drop out. If students were homogeneous, so that every student’s probability of 

having a catastrophic life event was the same, then this model would be a good one. Each coin 

flip would be equivalent to an opportunity to have a catastrophic event happen to a student. 

However, we know that students are nowhere near homogeneous. Community college students 

are quite diverse in their backgrounds and preparation. Importantly, we can predict, with some 

accuracy, who will be successful in school (68). So this model for generating our observed 

distributions of student capital just doesn’t work. 

 

 

  



Fig. S1. Distributions of credits earned by college. (College 30 through College 300) 









 

  



Fig. S2. QQ plots for each cohort and model in the analysis. Each cohort consists of all students 

who started at one college in a single year. (College 10 Cohort 1 through College 300 Cohort 5) 







































































 

 

 

 

 

 

 

 

 

 

 

 

 

  



Fig. S3. Summary statistics by cohort. A cohort is the set of all students who started at a given 

college in a given academic year. 

 

 
 

  



Fig. S4. Summary statistics by college. 

 

 

 

  



Fig. S5. Inferred probability mass function of either transferring or graduating (success 

point) at a given number of credits for the complete dataset of students. Most classes are 5 

credits, so the probability of a success point at a multiple of 5 is higher. 

 

 
  



Fig. S6. Probability that a randomly chosen student will graduate/transfer at a given credit 

level (smoothed). Specifically, this is the smoothed inferred probability mass function (Figure 

S5) of either transferring or graduating (success point) at a given number of credits for the 

complete dataset of students.  

 

 



Fig. S7. Visual description of the creation of the data used in the QQ plots and in the 

reconstruction of dropout rates. Each value in the histogram in the bottom right was generated 

by taking the minimum of a randomly chosen point from the bottom left and from the top right 

distributions. 

 

 

 

 

 

  



Table S1. Akaike Information Criterion (AIC) values for each college-year cohort and 

model. Smaller AIC’s represent a better fit. 

 

 

 Normal Exponential Power 

Law 

College 10, Cohort 1 2750 2726 3069 

College 10, Cohort 2 2957 2915 3222 

College 10, Cohort 3 2796 2759 3026 

College 10, Cohort 4 3188 3153 3515 

College 10, Cohort 5 3567 3514 3865 

College 20, Cohort 1 1868 1829 1971 

College 20, Cohort 2 1686 1670 1907 

College 20, Cohort 3 2221 2185 2320 

College 20, Cohort 4 1707 1682 1828 

College 20, Cohort 5 2282 2254 2525 

College 30, Cohort 1 5403 5348 5936 

College 30, Cohort 2 5902 5847 6507 

College 30, Cohort 3 6392 6337 7063 

College 30, Cohort 4 7941 7854 8675 

College 30, Cohort 5 9550 9474 10583 

College 40, Cohort 1 8361 8240 9045 

College 40, Cohort 2 8566 8456 9367 

College 40, Cohort 3 8665 8552 9418 

College 40, Cohort 4 9486 9360 10367 

College 40, Cohort 5 9780 9640 10786 

College 50, Cohort 1 9875 9761 10832 

College 50, Cohort 2 9979 9874 10981 

College 50, Cohort 3 11470 11306 12442 

College 50, Cohort 4 13335 13185 14653 

College 50, Cohort 5 12024 11898 13295 

College 62, Cohort 1 9613 9499 10634 

College 62, Cohort 2 7526 7455 8302 

College 62, Cohort 3 8098 8043 9052 

College 62, Cohort 4 8238 8156 9079 

College 62, Cohort 5 8572 8498 9467 

College 63, Cohort 1 7753 7593 8290 

College 63, Cohort 2 7826 7680 8520 

College 63, Cohort 3 6214 6095 6527 



College 63, Cohort 4 7700 7561 8363 

College 63, Cohort 5 8127 7973 8738 

College 64, Cohort 1 3668 3580 3833 

College 64, Cohort 2 3751 3656 3972 

College 64, Cohort 3 3614 3517 3772 

College 64, Cohort 4 4291 4211 4651 

College 64, Cohort 5 4141 4050 4336 

College 70, Cohort 1 6735 6682 7509 

College 70, Cohort 2 5488 5447 6146 

College 70, Cohort 3 6359 6321 7040 

College 70, Cohort 4 6328 6282 7010 

College 70, Cohort 5 6345 6289 6997 

College 90, Cohort 1 12277 12129 13492 

College 90, Cohort 2 15080 14876 16383 

College 90, Cohort 3 13030 12880 14161 

College 90, Cohort 4 12539 12405 13688 

College 90, Cohort 5 12679 12551 13835 

College 100, Cohort 1 13209 13148 14927 

College 100, Cohort 2 13423 13364 15123 

College 100, Cohort 3 14043 13979 15741 

College 100, Cohort 4 12666 12584 14055 

College 100, Cohort 5 12977 12865 14376 

College 111, Cohort 1 7633 7549 8475 

College 111, Cohort 2 7547 7455 8248 

College 111, Cohort 3 6631 6581 7322 

College 111, Cohort 4 6828 6781 7611 

College 111, Cohort 5 6523 6484 7265 

College 112, Cohort 1 6122 6065 6772 

College 112, Cohort 2 6245 6181 6839 

College 112, Cohort 3 6574 6517 7247 

College 112, Cohort 4 5463 5417 6005 

College 112, Cohort 5 4691 4646 5156 

College 121, Cohort 1 2946 2927 3311 

College 121, Cohort 2 3075 3041 3339 

College 121, Cohort 3 2874 2849 3145 

College 121, Cohort 4 3410 3372 3691 

College 121, Cohort 5 2520 2482 2656 

College 130, Cohort 1 3004 2968 3249 

College 130, Cohort 2 4136 4085 4507 



College 130, Cohort 3 4341 4287 4684 

College 130, Cohort 4 4341 4283 4745 

College 130, Cohort 5 4747 4679 5098 

College 140, Cohort 1 9103 8997 9915 

College 140, Cohort 2 10174 10065 11062 

College 140, Cohort 3 11803 11685 12927 

College 140, Cohort 4 18412 18195 20231 

College 140, Cohort 5 14895 14623 16104 

College 150, Cohort 1 5325 5280 5913 

College 150, Cohort 2 5070 5034 5613 

College 150, Cohort 3 5799 5754 6342 

College 150, Cohort 4 6266 6194 6840 

College 150, Cohort 5 6267 6207 6831 

College 160, Cohort 1 4092 4064 4569 

College 160, Cohort 2 4113 4087 4612 

College 160, Cohort 3 4804 4776 5394 

College 160, Cohort 4 4304 4262 4705 

College 160, Cohort 5 4737 4697 5213 

College 171, Cohort 1 4613 4579 5180 

College 171, Cohort 2 4547 4501 5100 

College 171, Cohort 3 4000 3964 4363 

College 171, Cohort 4 3669 3646 4104 

College 171, Cohort 5 2655 2642 2970 

College 172, Cohort 1 12262 12056 13145 

College 172, Cohort 2 11257 11141 12515 

College 172, Cohort 3 13179 12930 13806 

College 172, Cohort 4 12038 11881 13005 

College 172, Cohort 5 12086 11892 12890 

College 180, Cohort 1 2104 2094 2391 

College 180, Cohort 2 2348 2316 2498 

College 180, Cohort 3 2408 2380 2621 

College 180, Cohort 4 2252 2242 2518 

College 180, Cohort 5 1518 1506 1645 

College 190, Cohort 1 9970 9839 10815 

College 190, Cohort 2 11231 11081 12077 

College 190, Cohort 3 11343 11192 12285 

College 190, Cohort 4 10197 10077 11007 

College 190, Cohort 5 10460 10343 11404 

College 200, Cohort 1 2306 2276 2461 



College 200, Cohort 2 3202 3165 3453 

College 200, Cohort 3 3537 3497 3858 

College 200, Cohort 4 3682 3627 3986 

College 200, Cohort 5 4062 4026 4468 

College 210, Cohort 1 7032 6963 7776 

College 210, Cohort 2 7914 7847 8768 

College 210, Cohort 3 8112 8037 8928 

College 210, Cohort 4 10750 10629 11761 

College 210, Cohort 5 10390 10259 11262 

College 220, Cohort 1 8835 8770 9883 

College 220, Cohort 2 9142 9060 10145 

College 220, Cohort 3 10811 10713 12001 

College 220, Cohort 4 11044 10948 12292 

College 220, Cohort 5 12373 12245 13659 

College 230, Cohort 1 10038 9941 11158 

College 230, Cohort 2 10276 10200 11450 

College 230, Cohort 3 10172 10107 11371 

College 230, Cohort 4 11159 11076 12511 

College 230, Cohort 5 11360 11308 12849 

College 240, Cohort 1 7249 7160 7916 

College 240, Cohort 2 6390 6292 6921 

College 240, Cohort 3 6401 6330 7046 

College 240, Cohort 4 6974 6866 7552 

College 240, Cohort 5 7048 6959 7696 

College 300, Cohort 1 5721 5644 6233 

College 300, Cohort 2 5952 5876 6491 

College 300, Cohort 3 6725 6648 7328 

College 300, Cohort 4 7260 7198 7984 

College 300, Cohort 5 7463 7378 8185 

 

 

  



Table S2. Summary statistics by student. 

 

Number of students 156,712 

Transferred 32.8% 

Graduated 26.2% 

Transferred or Graduated 43.2% 

Credits earned (mean) 60.4 

Credits earned (sd) 45.9 

Percent underrepresented 

minority (not white/Asian) 

28.7% 

Male 47.4% 

Age (mean) 21.4 

Age (sd) 7.2 
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