Supplementary information

Development of novel and green NiFe₂O₄/geopolymer nanocatalyst based on bentonite for synthesis of imidazole heterocycles by ultrasonic irradiations

Zoleikha Hajizadeh, Fateme Radinekiyan,¹ Reza Eivazzadeh-keihan, Ali Maleki*

Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran

University of Science and Technology, Tehran 16846-13114, Iran

*Corresponding author. E-mail: <u>maleki@iust.ac.ir</u>

¹Co-first author

•

T 11

Table of contents							
Entry	Subject	Page					
1	Table 1.Physical properties of geopolymer and NiFe ₂ O ₄ /geopolymer samples from BET analysis	S2					
2	Table 2. Optimization of different parameters for model reaction	S 3					
3	Fig. S1. Reusability of nanocatalyst in the synthesis of 4a	S4					
4	Fig. S2. FT-IR spectrums of recycled nanocatalyst	S5					
5	Fig. S3. EDX analysis of recycled nanocatalyst	S 6					
6	Fig. S4. FT-IR spectrum of the product (4a)	S7					
7	Fig. S5. ¹ H NMR of the product ($4a$)	S 8					
8	Fig. S6. ¹³ C NMR of the product (4a)	S 9					
9	Fig. S7. FT-IR spectrum of the product (4i)	S 10					
10	Fig. S8. ¹ H NMR of the product (4i)	S 11					
11	Fig. S9. ¹³ C NMR of the product (4i)	S12					

Physical Properties	Geopolymer Sample	NiFe ₂ O ₄ /geopolymer	
Surface area (m ² /g)	1.13	0.30	
Pore size (nm)	14.28	19.82	
The total norm volume of norms (am^3/a)	0.004	0.060	
The total pore volume of pores (cm ² /g)	0.004	0.069	

 $\label{eq:table1} \textbf{Table 1}. Physical properties of geopolymer and NiFe_2O_4/geopolymer samples from BET analysis.$

Entry	Solvent	Catalyst (g)	Condition/Temperature (°C)	Time (min)	Yield ^b (%)
1	EtOH	Nanocomposite (0.03)	r.t. / 27	277	75
2	EtOH	Nanocomposite (0.03)	Reflux / 90	155	89
3	Free- solvent	Nanocomposite (0.03)	Ultrasonic bath / 80	18	trace
4	H ₂ O	Nanocomposite (0.03)	Ultrasonic bath / 80	18	No reaction
5	EtOH	Nanocomposite (0.03)	Ultrasonic bath / 80	18	91
6	MeOH	Nanocomposite (0.03)	Ultrasonic bath / 80	18	76
7	CH_2Cl_2	Nanocomposite (0.03)	Ultrasonic bath / 80	18	84
8	CH ₃ CN	Nanocomposite (0.03)	Ultrasonic bath / 80	18	69
9	Toluene	Nanocomposite (0.03)	Ultrasonic bath / 80	18	trace
10	EtOH	-	Ultrasonic bath / 80	30	trace
11	EtOH	Bentonite (0.03)	Ultrasonic bath / 80	25	No reaction
12	EtOH	NiFe ₂ O ₄ (0.03)	Ultrasonic bath / 80	25	38
13	EtOH	Geopolymer (0.03)	Ultrasonic bath / 80	25	20
14	EtOH	Nanocomposite (0.01)	Ultrasonic bath / 80	18	65
15	EtOH	Nanocomposite (0.02)	Ultrasonic bath / 80	18	71
16	EtOH	Nanocomposite (0.04)	Ultrasonic bath / 80	18	89
17	EtOH	Nanocomposite (0.05)	Ultrasonic bath / 80	18	90

Table 2. Optimization of different parameters for model reaction.^a

^aThe reaction condition: benzil (0.8 mmol), benzaldehyde (0.8 mmol), ammonium acetate (2.0 mmol), Ethanol (7 mL) ultrasonic irradiations.

^b Isolated yield.

Fig. S1. The Reusability of NiFe₂O₄/geopolymer nanocatalyst in the synthesis of 4a.

Fig. S2. FT-IR spectra of (a) NiFe₂O₄/geopolymer nanocomposite, (b) recycled nanocatalyst.

Fig. S3. The EDX analysis of recycled NiFe₂O₄/geopolymer nanocomposite.

Fig. S4. The FT-IR spectrum of the product (4a).

Fig. S5. The ¹H NMR of the product (**4a**).

Fig. S6. The 13 C NMR of the product (**4a**).

Fig. S7. The FT-IR spectrum of the product (4i).

Fig. S8. The ¹H NMR of the product (**4i**).

Fig. S9. The 13 C NMR of the product (**4i**).