
iScience, Volume 23
Supplemental Information
Translational Components Contribute

to Acclimation Responses

to High Light, Heat, and Cold in Arabidopsis

Antoni Garcia-Molina, Tatjana Kleine, Kevin Schneider, Timo Mühlhaus, Martin
Lehmann, and Dario Leister



1 
 

 

Figure S1. Set-up used to 
assay for (de-)acclimation to 
high light, heat and cold 
conditions, Related to 
Figure 1. 
(A) Spectrum of the LED light 
source used for Arabidopsis 
growth. Arrows indicate blue 
(left) and red (right) peaks. 
(B) Growth of Arabidopsis 
under three different light 
regimes. Plants were grown 
for 14 days under standard 
conditions and exposed to 80, 
450 or 800 µmol photons m-1 
s-2 for a further 7 days. Bar = 1 
cm. 
(C) Extent of photoinhibition 
during acclimation and de-
acclimation. Maximum 
quantum yield of PSII 
(Fv/Fm) was recorded from 
plants exposed to standard 
conditions (control), high light 
(HL) at 450 or 800 µmol 
photons m-1 s-2 (450, 800), 
heat and cold at 35 or 80 µmol 
photons m-1 s-2 (35, 80). 
Values correspond to the 
mean ± SD of n ≥ 4 
independent experiments. **P 
< 0.01; *P < 0.05. See Table 
S1 for standard deviations and 
statistics. 
(D) Growth of Arabidopsis 
during exposure (acclimation) 
to high light (HL), heat and 
cold, followed by return to 
control conditions (de-
acclimation). Representative 
plants are shown after 2 and 4 
days of acclimation, and a 
further 2 (day 6) and 4 days 
(day 8) of de-acclimation. Bar 
= 1 cm. 
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Figure S2. Time-points at which metabolites and transcripts were analyzed, Related to 

Figures 1, 2 and 3. 

Equivalent time-points in the acclimation and de-acclimation phases were selected, and the 

latter are indicated by the prefix “d-“. 
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Figure S3. Metabolite changes during acclimation and de-acclimation to high light (HL), 

heat and cold, Related to Figure 2. 

(A) Numbers of significantly altered metabolites (SAMs). SAMs are defined as metabolites that 

showed at least a twofold change in concentration relative to the initial value at 0 min according 

to the Student’s t-test (FDR ≤ 0.05). 

(B) Contents of representative metabolites (relative to a 13C sorbitol standard) throughout the 

time-course under the four conditions. Note that differences between control conditions and 

treatments are not attributable to changes in periodicity caused by the circadian clock. 
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Figure S4. Levels of marker-gene transcripts plotted against circadian-clock time or cell-

cycle stage, Related to Figure 3. 

(A, B) The means of normalized counts were used to plot the mRNA expression pattern of 

bona-fide markers for circadian periodicity (A) and cell-cycle phase (B) at the initial time-point 

(0 min) and after 3 h, 2 days and 4 days of acclimation and de-acclimation.  
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Figure S5. Changes in transcript levels during (de-)acclimation, Related to Figure 3. 

(A) Differentially expressed genes (DEGs, showing fold changes (FC) ≥ 2 relative to the initial 

time-point t = 0 (with a false discovery rate [FDR] ≤ 0.05) during control conditions and phases 

of acclimation and de-acclimation to high light (HL), heat and cold.  

(B) Heatmap constructed by hierarchical clustering according to the Ward D2 method for DEGs 

coding for heat-shock proteins and heat-shock factors. Z-means for log2-converted FC scores 

under standard conditions, and exposure to HL, heat and cold during acclimation (acc) and de-

acclimation (de-acc) phases, were used. 
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Figure S6. Sequence logos of the most significantly identified cis-elements of genes whose 

expression was regulated under all investigated conditions, Related to Figure 3. 

The names of the putative transcription factors binding to the identified cis-elements, together 

with their respective logos, are also shown. Note that motifs can be read in opposite or same 

direction. 
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Figure S7. Baseline state for transcriptome changes during (de-)acclimation derived from 

surprisal analysis, Related to Figure 4. 

Time course of the baseline state as determined by surprisal analysis of the transcriptome 

profiles measured during exposure to high light (HL), heat, or cold treatment and recovery. The 

acclimation phase is indicated by the gray shading. 
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Figure S8. Conditional networks underlying transcriptome changes during (de-

)acclimation, Related to Figure 5. 

Co-expression of transcriptome changes during acclimation and de-acclimation was assessed 

by Pearson correlation (R) and mapped onto a reference network. The resulting networks 

encompass nodes corresponding to transcripts connected by edges (R ≥ 0.9) as defined in 

Experimental Procedures. The node size is proportional to its degree. Colors indicate network 

communities. The topological properties of the conditional networks are summarized in Table 

S3. 
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Figure S9. Additional comparison of network topology for transcriptome changes, 

Related to Figure 5. 

Density plot of Jaccard index (J(A,B)=(|A∩B|)/(|A|+|B|-|A∩B|), where A is the neighborhood 

of a node in network A, and B the neighborhood of the same node in network B calculated for 

the neighborhoods of all nodes in the conditional networks with a normalized degree > 0.5. 
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Figure S10. Expression patterns of transcripts for ribosomal proteins (RPs) identified as 

super-hubs in conditional networks, Related to Figure 6. 

Heatmaps obtained by hierarchical clustering according to the Ward D2 method for the RP 

super-hubs listed in Table 1. Z-means were calculated from log2-transformed fold changes 

compared to the initial time-point (0 min). acc, acclimation; de-acc, de-acclimation; HL, high 

light. 
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Supplemental Tables (Tables S1 to S6, and S9 to S10 are provided as separate Excel 
files) 

Table S7. Overview of DEGs encoding chloroplast proteins, Related to Figure 3. DEGs 

that behaved similarly in response to high light, heat and cold (de-)acclimation during the 

central part of the experimental time-courses (from 2 d acclimation to 15 min de-acclimation) 

and are related to chloroplast functions were sorted according to their molecular roles.  

Gene ID Symbol Annotation 
Photosynthesis 

AT1G29910 Lhcb1.2 Light harvesting chlorophyll a/b binding protein 1.2 
AT2G34430 Lhcb1.4 Light-harvesting chlorophyll a/b binding protein 1.4 
AT3G27690 Lhcb2.3 Light-harvesting chlorophyll a/b binding protein 2.3 
AT5G54270 Lhcb3 Light-harvesting chlorophyll a/b protein 3 
AT4G10340 Lhcb5 Light-harvesting complex of photosystem II subunit 5 
AT1G15820 Lhcb6 Light-harvesting complex photosystem II subunit 6 
AT4G09650 AtpD F-type H -transporting ATPase subunit delta 
AT1G03600 Psb27 Photosystem II family protein 
AT3G50820 PsbO2 Photosystem II subunit O2 
AT4G21280 PsbQ1 Photosystem II subunit Q1 

Redox 
AT1G76100 PETE1 Plastocyanin isoform 1 
AT1G20340 PETE2 Plastocyanin isoform 2 
AT4G09010 TL29 Ascorbate peroxidase 4 
AT1G77490 tAPX Thylakoidal ascorbate peroxidase 
AT3G09580 - FAD/NAD(P)-binding oxidoreductase family protein 
AT1G77510 PDIL1-2 PDI-like 1-2 

Chromophor 
AT1G44446 CH1 Pheophorbide a oxygenase family protein 
AT1G58290 HEMA1 Glutamyl-tRNA reductase family protein 
AT3G14930 HEME1 Uroporphyrinogen decarboxylase 
AT4G25080 CHLM Magnesium-protoporphyrin IX methyltransferase 

Metabolism 
AT5G35790 G6PD1 Glucose-6-phosphate dehydrogenase 1 
AT1G12900 GAPA-2 Glyceraldehyde 3-phosphate dehydrogenase A subunit 2 
AT1G61800 GPT2 Glucose-6-phosphate/phosphate translocator 2 

Others 
AT5G57560 TCH4 Xyloglucan endotransglucosylase/hydrolase 
AT2G47450 CAO Chloroplast signal recognition particle component 
AT1G31690 - Copper amine oxidase family protein 
AT2G29090 CYP707A2 Cytochrome P450 
AT3G09200 - Ribosomal protein L10 family protein 
AT3G50480 HR4 Homolog of RPW8 4 
AT1G74710 EDS16 ADC synthase superfamily protein 
AT5G01600 FER1 Ferretin 1 

 



12 
 

Table S8. Topological properties of conditional networks for transcripts, Related to 

Figure 5. Structural properties of each conditional network, including the numbers of nodes, 

connections (edges), average degree, modularity and super-hubs (all nodes with more than 100 

edges). Note that, due to network complexity, hubs behave as highly interconnected nodes, i.e. 

party hubs (Han et al., 2004) and therefore the product “number hubs x 100” can be higher than 

the total number of nodes in some networks. 

 HL Heat Cold 

Nodes 5,082 4,634 5,648 

Edges 61,800 35,706 110,446 

Average degree 16.89 15.41 39.11 

Modularity 0.48 0.60 0.40 

Super-hubs 371 223 657 

 

 

 

  



13 
 

Transparent Methods 

 

Plant cultivation and sampling 

Arabidopsis thaliana Col-0 seeds were stratified at 4ºC for 2 days, sown in 9x9-cm pots at a 

density of approximately 50 seeds per pot and cultivated in LED-41 HIL2 cabinets (Percival 

Scientific, Perry, Iowa, USA) under standard long-day conditions (“control conditions”) [LD; 

16 h light (80 µmol photons m-2 s-1) using 18% white and red LED light intensities (see Figure 

S1A for spectrum) at 22ºC and 8 h darkness at 18ºC]. After 14 days the light intensity was 

increased to 450 µmol photons m-2 s-1 (corresponding to 80 % of the white and red LED light 

intensities) to investigate acclimation to high light (HL). For heat treatment, plants were grown 

at a constant temperature of 32ºC. In the case of cold treatment, temperature and light intensity 

were reduced to 4ºC and 35 µmol photons m-2 s-1, respectively. In all cases, light was supplied 

for 18 h per day. Acclimation treatments were started 4 h after light onset and applied for 4 

days. Finally, plants were exposed to control conditions for 4 additional days for de-

acclimation. Sampling was carried out at the selected time-points (see Figure S2) by harvesting 

of entire shoots following immersion of plantlets in liquid nitrogen. Samples were then ground 

and stored at -80ºC prior to characterization. 

 

Measurements of physiological parameters 

Fresh weight was determined as the mean of groups of 10 plants. Anthocyanin and chlorophyll 

content was determined as described previously (Mita et al., 1997; Parsons and Strickland, 

1963). Chlorophyll a fluorescence measurements were conducted using the IMAGING-PAM 

M-Series instrument (Walz, Effeltrich, Germany) on plants that had been dark-adapted for 30 

min. After determining the minimal fluorescence (Fo), a saturation pulse of actinic light (0.5 s; 

2700 μmol photons m-2 s-1; 450 nm) was applied to determine the maximum fluorescence (Fm) 

and the maximum quantum yield of photosystem II (PSII) (Fv/Fm; calculated as (Fm - Fo)/Fm). 
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The effective quantum yield of PSII (ΦII = (Fm’ − F0’)/Fm’]) and non-photochemical quenching 

(NPQ; calculated as (Fm-Fm')/Fm')) were monitored at 80 μmol photons m-2 s-1 every 2 sec for 

5 min (Armbruster et al., 2010) and the value at 260 s is depicted in the Figures. 

 

RNA isolation, transcriptome profiling and data analysis 

Total RNA from aerial parts of plants was isolated using Trizol (Invitrogen, Carlsbad, Calif., 

USA) using 1 part plant to 15 parts reagent (w/v), and purified on Direct-zol™ RNA MiniPrep 

Plus columns (Zymo Research, Irvine, Calif., USA) according to the manufacturer’s 

instructions. RNA integrity and quality were assessed by gel electrophoresis using the Agilent 

2100 Bioanalyzer (Agilent, Santa Clara, Calif., USA). Only those samples with an RNA 

Integrity Number (RIN) ≥ 7 were further processed. Ribosomal RNA depletion, generation of 

RNA-Seq libraries and 150-bp sequencing of long-non-coding (lnc) RNAs using the paired-

end mode were conducted by Novogene Biotech (Beijing, China) with standard Illumina 

protocols. The RNA-Seq libraries were sequenced on an Illumina HiSeq 2500 system (Illumina, 

San Diego, Calif. USA). Three independent biological replicates were used per time-point and 

treatment. 

RNA-Seq datasets were analyzed as follows: adaptor removal and sequencing quality 

was carried out with Trimmomatic (Bolger et al., 2014) and FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), respectively. Reads were 

mapped to the Arabidopsis genome (TAIR10) with Tophat 2.1.1 (Kim et al., 2013) for First 

Read (FR) unstranded libraries, adjusting the maximum intron length to 3000 bp. Reads were 

counted with featureCounts (Liao et al., 2014) according to the gene annotation in Araport11 

(www.araport.org/data/araport11). Differentially expressed genes (DEGs) were obtained with 

DESeq2 (Love et al., 2014) by comparing each time-point of the treatments with the initial time 

point (0 min). 
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All transcriptome datasets were deposited at the Gene Expression Omnibus (GEO; 

https://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE125950. 

 

Metabolite isolation, metabolome profiling and data analysis  

Polar primary metabolites were identified in 14-day-old plants and at the indicated times after 

transfer to acclimation and de-acclimation conditions. To this end, metabolites were extracted 

from 50-mg samples of frozen rosettes (n = 6 plants from 6 independent experiments) and 

derivatized as described previously (Erban et al., 2007; Lisec et al., 2006; Rossel et al., 2002). 

Ribitol (0.2 mg mL-1 in water) and 13C-labeled sorbitol (0.2 mg mL-1 in water) served as internal 

standards for relative quantification. The derivatized samples were injected into a gas 

chromatograph coupled to a time-of-flight mass spectrometer (GC-TOF-MS) system (Pegasus 

HT, Leco, St Joseph, Mich., USA) and chromatographic separation was performed on an 

Agilent GC 7890A, using a 30 m VF-5ms column with 10 m EZ-Guard column. Mass spectra 

were recorded at 20 scans s-1 with an 50-800 m/z scan range and evaluated using ChromaTOF 

4.5 and TagFinder 4.1 (Luedemann et al., 2008) and the compounds were manually annotated 

based on the Golm Metabolome Database (Kopka et al., 2005).  

 

Surprisal analysis 

Surprisal analysis is a thermodynamic approach that yields a biophysicochemical understanding 

and quantitative characterization of biological systems using a molecule-centered approach. 

The key step in surprisal analysis is the definition of a balanced state, i.e., the steady-state of 

the system that has the maximum entropy. Surprisal analysis then allows one to identify 

deviations of molecule levels with respect to the balanced state, which are quantified by 

constraints that characterize their responses. The surprisal 𝐼𝐼(𝑥𝑥) of each individual transcript 

𝑥𝑥1 … 𝑥𝑥𝑖𝑖 at the time-point 𝑡𝑡 is defined as the deviation from the individual transcript’s 

https://www.ncbi.nlm.nih.gov/geo/
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contribution to the baseline state 𝑥𝑥𝑖𝑖0: 𝐼𝐼(𝑥𝑥) =  − ln(𝑥𝑥𝑖𝑖(𝑡𝑡)
𝑥𝑥𝑖𝑖
0 ). This is achieved by fitting the surprisal 

using a number of terms, −∑ 𝐺𝐺𝑖𝑖𝑖𝑖𝛼𝛼=1 𝜆𝜆𝛼𝛼(𝑡𝑡) , where 𝛼𝛼 is the index of the constraint, 𝐺𝐺𝑖𝑖𝑖𝑖 is the 

weight of the transcript 𝑥𝑥𝑖𝑖 in constraint 𝐺𝐺𝛼𝛼, and 𝜆𝜆𝛼𝛼(𝑡𝑡) is the Lagrange multiplier for 𝐺𝐺𝛼𝛼 that is 

being varied to find the best fit. This is achieved as described by Remacle et al. (2010) using 

the singular value decomposition. Raw count data from the transcriptome datasets for each 

experimental condition were averaged across replicates. To deal with counts equal to 0, all 

counts were increased by 1. Subsequently, the resulting count means were normalized using the 

FPKM (Fragment Per Kilobase Million) method. Surprisal analysis was performed as described 

by Remacle et al. (2010) on the preprocessed datasets transformed into the natural logarithm 

space using the F# implementation available in the FSharp.Stats package 

(https://github.com/CSBiology/FSharp.Stats @ v0.1.1).  

For constraint-based time-course comparisons between experimental conditions, linear 

regression of each constraint potential was calculated against all conditions using the 

FSharp.Stats package. The coefficient of determination (R²) of these regressions was then 

weighted using the mean of the respective constraint weights (the singular values obtained by 

surprisal analysis).  

 

Construction of conditional networks 

Correlation Networks of the respective conditions were elaborated from the transcription 

profiles. To this end, pairwise Pearson correlations (R) among the mean FPKM values for each 

transcript were computed, and the subsequent correlation matrix was used to construct the 

network. Subsequently, Random Matrix Theory (RMT) (Luo et al., 2007) implemented in the 

FSharp.Stats package was used to find an optimal threshold to filter out spurious correlations 

and noise. Accordingly, absolute values of R = 0.9003, 0.9106 and 0.9116 were used for the 

data from HL, heat and cold treatments, respectively. To further constrain the correlation 
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network, the topological overlap of the filtered correlation networks with the structural and 

functional reference network ARANet v2 (Lee et al., 2015) 

(https://www.inetbio.org/aranet/downloadnetwork.php) was computed by filtering edges that 

were not present in the reference network. The resulting networks contain specific information 

about the experimental condition and general information about structure- function relations in 

Arabidopsis thaliana and are therefore termed conditional networks. Networks were visualized 

and analyzed in Gephi (https://gephi.org/). 

To assess conditional network similarity between experimental conditions, all node 

degrees were normalized to the highest degree and filtered for overlapping nodes for each 

comparison. Pearson correlations of normalized node degrees of these overlapping nodes were 

calculated using the FSharp.Stats package.  

 

Further bioinformatic analyses 

Partial Least Squares (PLS) regression analysis was performed using the plsdepot R package 

(https://CRAN.R-project.org/package=plsdepot @ v0.1.17), extracting the first two 

components without crossvalidation, and using the constraint potentials obtained by surprisal 

analysis as predictors for the physiological parameters of the respective condition (responses).  

Differences in transcripts were estimated according to DESeq2, as mentioned above. 

Metabolome datasets were filtered by one-way ANOVA (FDR ≤ 0.05) to exclude differences 

due to sample variability, and Student´s t-test was applied. In all cases, pairwise comparisons 

of each time-point for the treatments against the respective control were considered. Significant 

differences in transcripts (DEGs) and metabolites (SAMs) were defined by applying a cut-off 

of an absolute log2-fold change (FC) ≥ 1 and a false discovery rate (FDR) of ≤ 0.05 after 

applying the multiple testing Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995). 

Heat maps with hierarchical clustering according to the Ward D2 method were elaborated using 

Z-mean values using the pheatmap package integrated in RStudio 

https://www.inetbio.org/aranet/downloadnetwork.php
https://gephi.org/
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(https://www.bioconductor.org). Venn diagrams were elaborated in the interface Venny 2.1 

(Oliveros, 2007-2015) and the significance of overlaps was calculated with the RStudio 

package SuperExactTest (Wang et al., 2015). Gene Ontology (GO) enrichments were obtained 

from the Database for Annotation, Visualization and Integrated Discovery (DAVID) (Huang 

da et al., 2009a, b), applying a cut-off of 2-fold enrichment compared to the expected frequency 

in the Arabidopsis genome and an FDR (Benjamini-Hochberg) of ≤ 0.05. Non-redundant GO 

terms were selected in the interface REVIGO using the small similarity (0.5) parameter (Supek 

et al., 2011). Significance of enrichments were calculated with Fisher’s exact test with the stat 

and package (RStudio). 
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